
Treball final de grau

Estudi: Grau en Enginyeria Informàtica

Títol: Disseny i implementació d’un servei de commutació de
flufos multimèdia

Document: Memòria

Alumne: David Martínez Álvarez, u1939690

Tutor: Josep Lluís Marzo Lazaro
Departament: Arquitectura i Tecnologia de Computadors
Àrea: Arquitectura i Tecnologia de Computadors

Convocatòria (mes/any): Juny 2019

Universitat de Girona

Escola Politècnica Superior

Grau d’Enginyeria Informàtica

Treball Final de Grau

Design and Implementation of a
Multimedia Flow Switch Service

Document:
Report

Author:
David Mart́ınez, u1939690

Professor:
Dr. Jose Luis Marzo

Department:
Arquitectura i Tecnologia

de Computadors (ATC)

June, 2019

Contents

1 Introduction 3
1.1 Motivations and purpose . 3
1.2 Project objectives . 4
1.3 Project structure . 4

2 Methodology 5
2.1 Agile based on PXP . 6

3 Planning 9
3.1 Customer requirements . 9
3.2 Sub-projects definition . 10
3.3 Tasks definition . 14
3.4 Requirement Traceability Matrix . 20
3.5 Planning schedule . 21

4 Feasibility study 23
4.1 Technical concepts study . 23
4.2 Technology study . 23
4.3 Legal requirements study . 23
4.4 Economic study . 24
4.5 Conclusion . 27

5 Framework and background knowledge 29
5.1 Concepts definition . 30
5.2 Environments definition . 32

5.2.1 Testing environment . 32
5.2.2 Production environment . 33

5.3 Project associates . 34

6 System requirements 35
6.1 Functional requirements . 35
6.2 Non-functional requirements . 37

7 Studies and decisions 39
7.1 Hardware . 39
7.2 Multimedia Flow Switch Server . 39

7.2.1 WebRTC Technology . 39
7.2.2 NAT problem . 41
7.2.3 WebRTC Media Server . 42
7.2.4 Decisions . 43
7.2.5 MediaSoup SFU Server . 46
7.2.6 Software libararies . 49

7.3 SaaS -based application . 50
7.3.1 Back-end . 50
7.3.2 Front-end . 52

7.4 MWA: MFSS integration with the SaaS -based application 55
7.5 Git client choice & practices . 55

1

7.6 Documentation practices . 57
7.7 Source code editor choice . 58
7.8 Final software used and technical requirements 59
7.9 Marketing study . 60

7.9.1 MWA name . 60
7.9.2 User interfaces design . 60
7.9.3 Logos . 61

7.10 Business feasibility study . 63
7.10.1 Value Proposition . 64
7.10.2 Business competitive study . 66

8 System analysis and design 69
8.1 System architecture . 69
8.2 System requirements analysis . 70

8.2.1 Functional requirements analysis 70
8.2.2 Non-functional requirements analysis 75

8.3 Use case diagram . 77
8.4 Database design . 78
8.5 Modules design . 81
8.6 Front-end interfaces . 96

9 Implementation and testing 97
9.1 Flowescent Server . 97
9.2 React client . 100
9.3 Web Socket protocol . 107
9.4 Recordings . 109
9.5 Final project structure . 111

10 Deployment and Results 113
10.1 Deployment . 113
10.2 Results . 116

11 Conclusions 119

12 Future Work 123

13 Bibliography 125

14 User manual 127
14.1 Normal user manual . 127
14.2 Admin user manual . 128

2

1 Introduction

This project consists of developing a scalable Multimedia Flow Switch Server (MFSS).
The resulting server is used to create a real-time Meetings Web-based Application (MWA),
considered as a Multimedia Flow Switch Service. The MFSS enables to manage partic-
ipants media flows efficiently under a real-time meeting. The MWA provides a simple
professional web application, using the MFSS services.

1.1 Motivations and purpose

Several Spanish companies continue to use traditional face-to-face meetings. The major
motivation of this project is the necessity of having a simple, efficient, and affordable
software that could communicate company members remotely. It becomes a complete IT
project, as it demands system and programming skills.

One interesting finding for a computer engineer is to prove itself, making a complete
IT project as a final thesis. It is especially helpful for an engineer to work and fit different
theoretical concepts learned during the degree. This process provides enough practical
experience to be prepared to go into the market world.

I’ve found WebRTC and real-time communications interesting since I’ve been experi-
menting with them at Backbone networks and public data services subject. People know
about several popular and high used real-time applications like WhatsApp, Skype, Viber,
or WeChat, those applications generally attend single users demands, though they do not
provide company oriented solutions.

Although professional real-time meetings software already exist, most of them work
under deprecated or inefficient technologies. Recent years have seen the emergence of
new powerful tools, several times more efficient and scalable.

Real-time multimedia sharing services are diverse and frequently user-oriented. User-
oriented services are optimized to work on one-by-one user conferences, or with reduced
casual meetings. A company environment is more complex and needs efficient perfor-
mance on many-to-many user meetings.

Real-time communications software is designed differently depending on its purpose.
If the software is based on direct connections between users (peer-to-peer), then their real-
time multimedia flows can be sent directly. On the other hand, it generates a scalability
problem, as each user has to send his/her media to all the others, and receive all the
other user’s media by independent flows. As the project purpose is to develop a company-
oriented meeting service, it is necessary to implement a central server that handles all
media in real-time, and then redirects them correctly. A relevant server design enables
to solve the scalability problem, as media flows would be fully controlled.

3

This project does not only implement software that could meet the needs of a partic-
ular company, it also implements a Meetings Web-based Application (MWA) SaaS -based
providing real-time meeting functionalities to the stakeholders corporations. A Software
as a Service (SaaS) is a software licensing and delivery model, in which software is licensed
on a subscription basis and is centrally hosted.

As stated, the principal project purpose is to design and develop a Multimedia Flow
Switch Server (MFSS), however, to test its correctness, the MWA is contemplated. The
MWA is expected to be simple and limited, getting much less importance than MFSS
development.

1.2 Project objectives

According to the purpose, the project objectives are:

1. Exploring and studying modern and efficient technologies for use in the MFSS.

2. Finding MFSS core tools that fill the project purpose or implementing a new one.

3. Developing a simple and functional application (MWA) SaaS -based to provide
MFSS meetings services to those companies who want it.

4. Deciding some commercial aspects of MWA, such as names, value proposition, and
service plans.

5. Providing understandable code implementations and complete documentation.

1.3 Project structure

The EPS bachelor’s degree guide contains an example of a structure as a reference for
final degree projects. However, some methodologies may need minor structural changes.

According to the guide, the Feasibility study section should be placed after the in-
troduction and before the methodology. However, it was decided to place the feasibility
study before the methodology and planning schedule, as the last ones can directly inter-
fere with it. The project planning may vary depending on the methodology used and
should typically be considered as a part of the feasibility study.

Consequently, the structure has been modified in the early sections, being from 1 to
4:

1. Introduction.

2. Methodology.

3. Planning.

4. Feasibility study.

4

2 Methodology

It is necessary to select a suitable methodology [1] [2] to perform an optimal project de-
velopment. Methodologies are important for enterprises, especially for project managers,
and each company follows its preferred way. The following description provides a brief
comparison between the most used project methodologies. However, they are usually
used with some modifications to fulfill particular necessities:

Agile
For many project teams, it is considered as an ideal methodology. Agile has method-
ologies within itself, such as Scrum and Kanban. There are some discrepancies
about Agile that should be considered more as frameworks. However, they are
used to develop services with their specifications, causing them to be considered
as a methodology. Agile is based on developing automated tasks at determined
timescales called sprints. This procedure is suited for projects that require flexibil-
ity and have an uncertain level of complexity, like new products or services.

Scrum
This is a framework for Agile methodology. It is comprised of five main values:
Commitment, courage, focus, openness, and respect. Its objective is to develop
complex products through collaboration, responsibility, and interactive progress
using fixed-length iterations. Scrum differs from Agile in how it operates on certain
events, roles, and artifacts.

Kanban
Kanban is another framework used in Agile methodology. It matches the work to
the team’s capacity. Its main goal is to ensure details done as fast as possible with
no fixed-length iterations.

Lean
All methodologies have their pros and cons, and depending on what is chosen im-
pacts on different product quality and development costs. Lean methodology is
usually known as an ideal “Quality/Price” option. In other words, it maximizes
customer value while minimizes waste. This procedure is suited for teams that are
interested in transforming how they conduct doing business.

Waterfall
As some of the previous methodologies are relatively new, Waterfall is one of the
traditional ones. It stresses the importance of having clear documentation, revealing
that if a developer leaves the job in the middle of the project, someone else can
start where he/she left. Agile is an “upgrade” of this methodology and faces many
issues like non-adaptive design constraints, the poor consumer feedback and delayed
testing period. This procedure is suited for projects that have been done previously
with low change for surprises.

5

An ideal solution for this project in consideration of previously studied methodologies
is Agile. However, this project is not collaborative, and the application is not developed
gradually, as Agile represents. Consequently, it is necessary to find a way to adapt Agile
methodology on a solo project.

2.1 Agile based on PXP

It is possible to find some useful adaptations, discovering that people have doubts about
this exploring a little bit through forums. Personal Extreme Programming[3] (PXP) is a
project methodology designed especially for solo software projects. The following PXP
principles allow developers to be more flexible and responsive to changes:

1) It is essential to take control of daily work.

2) Developers have to learn from their development processes variations to improve
their performance.

3) All tasks need to be accompanied by continuous testing.

4) Defects should be detected as early as possible to fix it at start-up phases when the
cost is lower.

5) Developers should try to automate as much as possible their daily work.

6) Provide a coding standard to unify the project programming style can be helpful
for future improvements or modifications.

7) As a solo methodology, a simple design is an ideal option to avoid complications.

8) Developers should release small pieces of software to ensure its correct behavior and
successfully testing.

The PXP process phases are similar to Scrum. The main difference is that PXP has
some environment adaptations for solo projects. Table 1 shows a brief description of
each phase. Figure 1 illustrates the graphical representation of these phases:

6

Table 1: PXP phases description.

Figure 1: PXP process phases.

7

This adapted methodology is the most suitable for this project. Agile based on PXP
is the chosen one for this project with few adaptations by needs. BCDS research group
methodology is quite similar to the Scrum model, working by teams of two or four people.
PXP methodology is working as an adaptation for this project. However, it is possible
to make little changes at some phase.

The project planning is defined through the PXP requirements and the planning
schedule. It has the following structure:

1) Customer requirements definition.

2) Sub-projects definition focused on the requirements.

3) Task definitions for each sub-project.

4) Gantt diagram and timeline elaboration of sub-projects and its tasks.

8

3 Planning

Project planning must be done based on the scope, objectives, and customer require-
ments of the project. The customer requirements are the core for the detailed system
requirements, explained later in the System requirements section.

As my own project manager, I have decided to follow the PMBOK guide [4] practices.
The project manager [5] has the overall authority and responsibility for managing the
project according to the project plan.

The project range includes the planning, studies, design, development, testing, and
deployment phases, without considering any changes in requirements. It is especially
relevant for the Meetings Web-based Application MWA software meet all customer re-
quirements. Furthermore, it has to provide full documentation and manuals. Once all
documentation and code are complete, then the project is completed. The project code
is not outsourced, as all work is performed internally.

3.1 Customer requirements

Companies attend to their customer’s requirements to develop software applications for
them. This project is being performed in a completely autonomous way. Consequently,
I am my own customer.

The following list defines customer requirements based on project objectives:

CR1 Find an appropriate technology1 to design and implement the Multimedia
Flow Switch Server MFSS.

CR2 Develop the MFSS based on the previously chosen technology.

CR3 Design and implement a company SaaS -based application.

CR4 Integrate the MFSS with the company SaaS -based application, resulting in a
Meetings Web Application (MWA).

CR5 Perform a simple marketing and business feasibility studies to provide some
commercial vision for MWA software.

CR6 Deploy the MWA providing complete documentation and manuals.

The customer requirements have some dependencies between them. Table 2 shows
the dependency matrix, which displays those internal dependencies.

1An appropriate technology refers to the most accurate one according to project objectives

9

Table 2: Customer requirements dependencies matrix.

To perform the MFSS, it is necessary to first find an appropriate technology, being
CR2 dependent on CR1. The MFSS integration with SaaS -based application needs
both software to be made, being CR4 dependent on CR2 and CR3. Finally, it is not
possible to provide documentation and manuals before the MWA, being CR6 dependent
on CR4.

3.2 Sub-projects definition

The next step is to define modular and independent sub-projects that allows passing from
the initial to the final project environment, with all customer requirements and project
objectives accomplished.

Sub-projects definition has been performed by defining a deductive reasoning flow,
represented through a Project diagram. The project diagram is partially shown divided
into three divided parts: The initialization, the development, and the finalization.

The initialization phase is composed of the testing environment preparation and basic
studies. In other words, it is composed of the sub-projects that have to be performed
before any code development.

It is essential to define a testing environment before starting with customer require-
ments. Environment preparation consists basically of desktop computer availability. As
the MWA application is defined as SaaS -based, it needs a desktop computer that enables
local execution and testing. Once the testing environment is prepared, then it is possible
to research an appropriate technology for the MFSS. The technology has to accomplish
the project requirements and objectives. This procedure is deeply documented in the
Studies and decisions section.

10

The technology research opens two workflows, depending on its result. An ideal
situation is one where it is found an appropriate technology for the MFSS, although it is
uncertain. If the technology is found, the next sub-project would be to analyze, configure,
and append it to the server. Otherwise, it would be necessary to implement a technology
that fulfills customer requirements and project objectives demands. This open scenario
requires the diagram to be divided into two possible paths, one for each sub-project
workflow. Figure 2 illustrates the initialization phase of the Project diagram, including
the defined sub-projects.

Project Start

Testing
environment preparation

Research an appropriate
technology for the MFSS

Found ?

Analyze and configure
the chosen technology

Implement an
appropriate technology

no

yes

Figure 2: Project diagram: Initialization (1/3).

The development phase is composed of the whole application modules design and
development. It also contains the marketing & business feasibility studies. It begins
developing the MFSS through configuring and integrating the founded or implemented
technology.

In parallel with MFSS, it is essential to design and develop the SaaS -based applica-
tion that integrates the MFSS. This application is professional-oriented, offering different
service plans. Since the SaaS -based application has no previous dependencies, it could
be performed in the project beginning after Testing environment preparation sub-project.

With MFSS development: Technology integration and SaaS-based application: Design
and development sub-projects performed, the next one consists of their integration by
creating the final MWA. Furthermore, the integration includes software testing and error
correction processes, which can revert steps backward to both SaaS -based application
and MFSS development to solve bugs or design problems.

11

In parallel with all the previous defined sub-projects, there is one more requirement
with no previous dependencies, the MWA marketing and business studies. It would
be better to perform those studies before MWA creation to check if the application is
commercially feasible. If it is not, it can be an important indicator that the application
approach should be revised.

The phase is not completed, as it is essential to write the final project report. It is
important to recall that this is an end-of-degree project, causing a remarkable amount
of time (≈ 1/3) to be spent on the report writing. It is written in parallel with all the
other sub-project. Figure 3 illustrates the initialization and development phases of the
Project diagram, including the initialization and development defined sub-projects.

Project Start

Testing
environment preparation

Research an appropriate
technology for the MFSS

Found ?

Analyze and configure
the chosen technology

Implement an
appropriate technology

MFSS development:
Technology integration

SaaS -based application:
Design and development

MWA creation:
MFSS integration with
SaaS-based application

Marketing & business
feasibility studies for MWA

Project report
writing

no

yes

Testing

Testing

Figure 3: Project diagram: Initialization and development (2/3).

The finalization phase is composed of the MWA deployment, documentation, and
manuals. It integrates all the development phase sub-projects, enabling the project com-
pletion.

12

The MWA is prepared for production, although it is necessary to prepare a produc-
tion environment for subsequent deployment. MWA documentation and manuals receive
special attention, becoming an important part. It is important to note that this pro-
cess only contemplates MWA related information, excluding the project report. The
documentation is based on the source code for possible future developers. The manu-
als are user-based, providing a basic user guide. Figure 4 illustrates the integration,
development, and finalization phases of the Project diagram, including all sub-projects.

Project Start

Testing
environment preparation

Research an appropriate
technology for the MFSS

Found ?

Analyze and configure
the chosen technology

Implement an
appropriate technology

MFSS development:
Technology integration

SaaS -based application:
Design and development

MWA creation:
MFSS integration with
SaaS-based application

Marketing & business
feasibility studies for MWA

MWA deployment,
documentation, and manuals

d

d
Project report

writing

Project Completed

no

yes

Testing

Testing

Figure 4: Project diagram: Initialization, development, and finalization (3/3).

13

3.3 Tasks definition

It is essential to define a set of tasks for each sub-project. Those tasks enables a complete
and accurate planning schedule elaboration. All sub-project tasks are defined in a detailed
manner.

As there are many sub-projects, they are bonded together in work areas for better
understanding and readability. The following list defines those work areas with their
corresponding sub-projects:

• Environment preparation.

– Testing environment preparation.

• MFSS development.

– Research an appropriate technology for the MFSS.

– Analyze and configure the chosen technology or implement an appropriate one.

– MFSS development: Technology integration.

• SaaS -based application development.

– SaaS -based application: Design and development.

• MWA development.

– MWA creation: MFSS integration with SaaS -based application.

– MWA deployment, documentation, and manuals.

• Marketing & business feasibility studies.

– Marketing & business feasibility studies for MWA.

• Project report.

– Project report writing.

The execution order is fairly clear except with the Marketing & business feasibility
studies for MWA sub-project. As said in the Sub-projects definition section, it is per-
formed before SaaS-based application: Design and development as it can influence the
SaaS -based application user interfaces.

14

As a result, the sub-projects are ordered as follows:

S1 Testing environment preparation.

S2 Research an appropriate technology for the MFSS.

S3 (a) Analyze and configure the chosen technology.
or

(b) Implement an appropriate technology.

S4 MFSS development: Technology integration.

S5 Marketing & business feasibility studies for MWA.

S6 SaaS -based application: Design and development.

S7 MWA creation: MFSS integration with SaaS -based application.

S8 MWA deployment, documentation, and manuals.

S9 Project report writing.

The S3a and S3b sub-projects have been defined as the third sub-project with two
different workflows, depending on the S2 sub-project result.

1) Testing environment preparation

As a cloud SaaS -based application, the MWA does not require a sophisticated testing
environment. Thanks to BCDS research group IT equipment, many virtualized servers
and desktop computers are available to be included in project environments.

The following list shows all this sub-project related tasks, considering that software
could be developed and tested at the same computer:

S1.1 Desktop computer availability. It is possible to perform all the sub-projects
except MWA deployment, documentation, and manuals using a single desktop
computer, although it is possible to have multiple computer environments.

S1.2 Prepare a testing environment for those computers. The computers only need a
desktop-based OS, an internet connection, and software development compilers,
editors, and tools defined at the Framework and background knowledge section.

2) Research an appropriate technology for the MFSS

This sub-project contains all necessary tasks to research an appropriate technology for the
MFSS. It could be done after the Testing environment preparation sub-project, although
it is not strictly necessary.

The following list shows all this sub-project related tasks, starting from the customer
requirements needs and ending with the final technology decision:

15

S2.1 Technology requirements definition based on customer requirements needs.

S2.2 First search for appropriate technology.

S2.3 Limit the search results based on project needs.

S2.4 Limit the search results based on an analysis of each technology (e.g., capacity,
performance, scalability, and utility).

S2.5 Limit the search results with some testing processes.

S2.6 Decide an ideal option by considering all obtained data from limitation processes.
If there is no feasible candidate, create and develop a new one.

3a) Analyze and configure the chosen technology

Requirements:

S1 Testing environment preparation.

S2 Research an appropriate technology for the MFSS.

This sub-project tasks are dependent on the chosen technology and are performed in
case of having a feasible technology candidate. The most significant S3a tasks are related
to learning all necessary configurations to integrate the technology by creating the MFSS.

The following list shows all this sub-project related tasks:

S3a.1 Analyze the chosen technology and other projects based on it.

S3a.2 Search a proper free framework that implements the technology. If it exists,
integrate it by creating the MFSS. Otherwise, implement a new one.

S3a.3 Use a simple technology application to test it at the testing environment.

3b) Implement an appropriate technology

Requirements:

S1 Testing environment preparation.

S2 Research an appropriate technology for the MFSS.

This sub-project consists of implementing MFSS technology. Its tasks are performed
in case of not having found a feasible technology candidate.

If sub-project tasks have to be performed, they may need to be reconsidered and
probably be a part of more sub-projects. With this in mind, the following list shows all
this sub-project related tasks:

16

S3b.1 Search information about the appropriate design of multimedia flow switch servers.

S3b.2 Search information about signaling protocols.

S3b.3 Design an efficient switch according to the studied information.

S3b.4 Think about a way to control the switch and distribute multimedia flows.

S3b.5 Think about a way to reroute flows to an external endpoint allowing recordings.

S3b.6 In-depth technology testing.

The S3 sub-project has two possible workflows, (a) or (b) depending on the S2 sub-
project result. However, the project planning studies only consider the most probably
S2 sub-project result, having found an appropriate technology.

4) MFSS development: Technology integration

Requirements:

S1 Testing environment preparation.

S2 Research an appropriate technology for the MFSS.

S3 (a) Analyze and configure the chosen technology.
or

(b) Implement an appropriate technology.

This sub-project consists of integrating the chosen or implemented technology in a
server by creating the MFSS.

The following list shows all this sub-project related tasks:

S4.1 Basic server implementation.

S4.2 Integrate the chosen or implemented technology in the performed server by cre-
ating the MFSS.

S4.3 In-depth MFSS testing.

17

5) Marketing & business feasibility studies for MWA

As explained before, this sub-project has no other sub-project dependencies. It consists
of making a marketing and business feasibility studies for the MWA. The marketing
study provides some additional marketing value, such as commercial names, slogans,
and plans. The business feasibility study analyzes the hypothetical situation of a MWA
commercialization.

The following list shows all this sub-project related tasks:

S5.1 Marketing study elaboration.

(a) Explore some basic well practices to think about the MFSS name, slogans,
and other marketing fields.

(b) Explore some business criteria for designing correct and profitable service
plans.

S5.2 Business feasibility study elaboration.

(a) Value proposal study.

(b) Competition analysis.

(c) Business plans definition.

6) SaaS -based application: Design and development

Requirements:

S1 Testing environment preparation.

This sub-project has only one previous dependency, the Testing environment prepara-
tion sub-project, and does not depend on the MFSS development process. It consists of
many studies about usable candidates technologies and decision making (e.g., web appli-
cation design). Once studies are complete, then the SaaS -based application is developed
and minimally documented.

The following list shows all this sub-project related tasks:

S6.1 Study and decide some technologies, programming languages, and important
libraries to use at SaaS -based application.

S6.2 Perform the SaaS -based application server (back end) design according to cus-
tomer requirements.

S6.3 Perform the SaaS -based application interface (front end) design according to
customer requirements.

S6.4 Develop and test the back end server.

S6.5 Develop and test the front end interface and integrate it correctly with the server.

S6.6 Provide minimal source code documentation. Although a specific documentation
sub-project exists after MWA creation, it is important to document some code
functionalities to be correctly interpreted later.

18

7) MWA creation: MFSS integration with SaaS -based application

Requirements:

S1 Testing environment preparation.

S2 Research an appropriate technology for the MFSS.

S3 (a) Analyze and configure the chosen technology.
or

(b) Implement an appropriate technology.

S4 MFSS development: Technology integration.

S5 SaaS -based application: Design and development.

This sub-project depends directly on the MFSS development: Technology integration
and the SaaS-based application: Design and development ones. It consists of those two
sub-project integrations by creating the MWA application.

The following list shows all this sub-project related tasks:

S7.1 Design a communication protocol between software.

S7.2 Integrate the MFSS with the SaaS -based application by creating the MWA.

S7.3 In-depth testing.

8) MWA deployment, documentation, and manuals

Requirements:

S1 Testing environment preparation.

S2 Research an appropriate technology for the MFSS.

S3 (a) Analyze and configure the chosen technology.
or

(b) Implement an appropriate technology.

S4 MFSS development: Technology integration.

S5 SaaS -based application: Design and development.

S6 MWA creation: MFSS integration with SaaS -based application

These sub-project goals are to deploy, document, and write user manuals for the
MWA. The deployment process consists of a production environment preparation and
the software source code build. It is essential to provide comprehensive documentation
and user basic manual. The documentation covers both source code documentation and
the necessary procedures to install MWA on other computers.

19

The following list shows all this sub-project related tasks:

S8.1 Production environment preparation.

S8.2 MWA deployment process development.

S8.3 Provide a comprehensive software generalized documentation following the most
used standards.

S8.4 Provide a basic user manual.

9) Project report writing

The project report writing is performed in parallel with all the other procedures. However,
it is possible that some sections may require specific task dependencies essential for their
documentation.

The following list shows all this sub-project related tasks:

S9.1 Report writing.

3.4 Requirement Traceability Matrix

Requirement Traceability Matrix (RTM) captures all requirements proposed by the cus-
tomer or software development team and their traceability in a single document. In
other words, it is a matrix that maps and traces user requirements with, in this case,
sub-projects and tasks. The central purpose of RTM is to ensure that all tasks are
covered. No functionality should miss while doing software testing.

The project planning has started from customer requirements (CR), and it has been
moving forward through sub-projects definition and their tasks. The traceability matrix
adds a graphical point of view, making the customer requirements as clear as possible.
Figure 5 exposes the RTM matrix.

Figure 5: Requirements Traceability Matrix (RTM).

20

3.5 Planning schedule

Gantt diagrams are one of the most used tools to visualize work plannings and provide an
indication of how a project is evolving. It is a representation of pending tasks according
to the predicted time to perform them.

The predicted time is represented horizontally, in which each column represents a de-
terminate amount of time (e.g., days, weeks). The process evolution is defined vertically,
from the beginning to the end. The project started by the middle of March 2019, and
the deadline is on June 11th, having exactly 13 available weeks. The days are placed on
the horizontal axis. The tasks are placed on the vertical axis, ordered by the expected
realization order (from left to right). A square represents each task occupying the space
of its time frame.

The most common way to make a Gantt diagram is with a spreadsheet-type editor
or an online application. However, it can be generated with other less common software.
The selected tool to make this project Gantt diagram is the TeamGantt online application
[6], which provides a free version for one single project. Figure 6 illustrates the resulting
diagram.

21

F
ig

u
re

6
:

G
an

tt
D

ia
gr

am
.

22

4 Feasibility study

This section exposes the whole Meetings Web-based Application MWA software feasibility
study, based on the project planning. It is important not to confuse this feasibility study
with the marketing & business study, defined as S5 sub-project. The first one only takes
into account the application related functionalities, and the other ones are based on the
company that might commercialize the software.

According to the official fifteen ECTS credits dedicated to this end-of-degree project,
the elaboration should take about 375 hours. These hours together with the available
weeks (13) results on about 4.12 hours daily spent time.

A feasibility study starts with the requirements and project planning, according to
the PMBOK guide. The MWA feasibility study covers technical concepts, technology,
legal and economic studies.

4.1 Technical concepts study

Technical concepts knowledge is particularly important and has been suitably acquired
during the degree. As the Motivations and purpose section explains, this end-of-degree
work is a complete IT project where several theoretical concepts are covered. The subjects
coursed during the degree provide all the necessary knowledge to perform the Multimedia
Flow Switch Server MFSS.

4.2 Technology study

The number of existent technologies is continually growing, enabling software functional-
ities to be performed in many ways. The computer engineering four-year degree provides
enough knowledge to make studies, and also decide which technology is better to apply.
Therefore, sufficient technology knowledge can be guaranteed.

4.3 Legal requirements study

All software must meet their corresponding legal requirements, based on the provided
services. Those requirements are different depending on the software utilization country.
As the MWA is developed under European law, only European regulations are taken into
account, such as GDPR (General Data Protection Regulation). The knowledge acquired
at legislation and professional ethics subject ensure that MWA meets all necessary legal
requirements.

23

4.4 Economic study

The economic study is an important aspect to find out if the MWA is economically
feasible, taking into account that MWA is developed under an IT company. The study
scope considers the design and implementation cost, excluding indirect expenses (e.g.,
hardware equipment, electricity costs). The MWA only uses free or open software, being
not necessary to consider any additional license expense. Consequently, the study only
takes into account the following costs:

• software analysis and design costs.

• Implementation costs.

• Production environment preparation costs.

The software developer salary is considered as 27e/hour, which is the top nine
European software engineer average [7]. The salary is estimated based on 40 hours a
week and 28 days vacation job.

The project schedule defined at the Planning section and the calculated salary allows
for making a cost table. It includes all project tasks related to MWA development,
showing the expected time and their own engineer/developer costs. It is important to
note that the S9 is not included, as it is not related to MWA software development.

24

Table 3: Estimated cost table.

25

As Table 3 shows, this MWA economic study results in 280 work hours with a
7,560e estimated cost. It is difficult to estimate the average cost of an application,
such it depends on many aspects. However, there are some online applications dedicated
to solving this problem. One of the best is the Estimate My App [8], which seems to
be a reliable option [9] to obtain an approximated idea that can be compared with the
predicted costs. This online tool only asks for different specs that the desired application
has to contain, and then compute an estimated cost result based on computer learning
algorithms.

The following list shows the Estimate My App input data provided, selected by cus-
tomer requirements:

• 1. How big is your app? Small.

• 2. What level of UI would you like? Basic.

• 3. Users & Accounts Email / Password Sign Up & Multi-tenant Accounts.

• 4. User Generated Content Dashboard & File Uploading & User Profiles &
Audio / Video processing.

• 6. Social & Engagement Messaging.

• 7. Billing & eCommerce Subscription plans & Product Management.

• 10. Security SSL Certificate based Security & DoS protection.

All the provided input generates an estimation cost of 26,100$ (≈23,400e), as shown
at Figure 7. While it is true that this estimation cannot be fully trusted, the obtained
cost is more than 3 times the previously obtained costs. It demonstrates that MFSS is
economically feasible.

Figure 7: Estimate My App estimation cost for MWA.

26

4.5 Conclusion

The previous technical knowledge, technology, legal and economic studies have proven
that the MWA is feasible based on the following arguments:

• Required technical knowledge is known as explained at previous technical concepts
study.

• Right technologies are used as explained at previous technology study. Those tech-
nologies are studied and selected in the Studies and decisions section.

• European legal requirements are satisfied, as explained at previous legal require-
ments study.

• The resulting economic study cost is feasible, as explained at previous economic
study.

27

28

5 Framework and background knowledge

This section defines essential technical concepts to understand the following studies and
design, like acronyms, words, and concepts. Table 4 shows some of these basic concepts.

Table 4: Basic concepts definition table.

As the whole application programming languages depend on future analysis and are
still unknown, this section keeps these decisions as pending. Programming language
decisions are exposed in the Studies and decisions section.

29

5.1 Concepts definition

This section shows other more advanced concepts necessary to understand all studies,
analysis, and implementations.

Version control system

It is helpful to use a Version Control System (VCS) at software projects, and most espe-
cially when the software is developed by teams. VCS are usually stand-alone applications
that add revision control support to projects. Revision control allows reverting documents
to previous versions correcting possible mistakes. In the case of multiple developers work-
ing on parallel, these systems are necessary to ensure there are no code conflicts between
them.

One of the most popular VCS is Git [10] [11]. Git is an open-source distributed VCS,
which means that it has a remote repository stored at one server and a local repository
stored in each local developer computer. A developer could update the remote repository
when developed a new feature or corrected some bugs, and all the other project partici-
pants can update their local repositories from the remote one. Table 5 shows the basic
Git vocabulary definitions essential for the Studies and decisions section understanding.
This vocabulary can be seen graphically in Figure 8.

Table 5: Git vocabulary definitions.

30

Figure 8: Git concepts graphical view.

Remote connections

As MWA is implemented based on the SaaS model, the final application has to be hosted
on a remote server. Therefore, it is necessary to briefly explain how to manage remote
servers, and the most popular way is using a Secure Communication Protocol.

Secure Communication protocols allow remote encrypted connections to be able to
communicate with other computers over insecure networks. The most popular commu-
nication protocol is the Secure Shell (SSH), a software package that enables secure shell
file transfers [12]. Figure 9 illustrates graphically the Secure Shell protocol.

Figure 9: Secure Shell protocol graphical view.

Source code editor

Another significant aspect is to define a source code editor, as the chosen one is the
backbone for both code and report writing. While programming languages are still unde-
fined, the source code editor is a conceptual framework that enables code writing despite
the language used. Therefore, the code is written with a source code editor and after
compiled and executed with the proper language tools.

Usually, source code editors are composed of a comprehensive suite of editing and
debugging tools, and lightweight integration with other services. An ideal option has to
be chosen in the Studies and decisions section.

31

Latex

Latex [14] is a document preparation system for high-quality typesetting. It is most often
used for medium-to-large technical or scientific documents although it is used for almost
any form of publishing.

All the project is being written using Latex as a result of previous experience in
research papers. It is necessary for the testing environment to have a source code editor for
report writing and Latex software and libraries for report compilation and visualization.

Some report diagrams and graphs are created through the Latex pgfgantt [15] package.
All project tables are created using LibreOffice Writer [16].

5.2 Environments definition

This project is formed by testing and production environments. Thanks to BCDS research
group IT equipment, many virtualized servers and desktop computers are available to be
included in project environments.

5.2.1 Testing environment

The initial testing environment preparation is the first sub-project, defined as S1 sub-
project. This environment is the development scope where the software is developed and
tested.

This environment could be installed and replied at different computers, and it is
possible to have multiple synchronized computers (e.g., home computer, netbook, work
computer). For this reason, the private BCDS GitLab Git service is used to synchronize
versions easily in all testing computers. GitLab is a Git service that offers a free and
open version of its software, that could be installed inside a business and education in-
frastructures such as BCDS. Consequently, the project is stored with no space limitations.

Figure 10 illustrates graphically the testing environment. The testing environment
could be implemented under different OS distributions, although they must meet at least
the following requirements:

• Internet connection: An internet connection is necessary to research information,
consult dictionaries, and download software libraries.

• Web browser: One of the sub-projects defined in the Planning section is the
SaaS-based application: Design and development S6 sub-project. It is essential to
have a JavaScript compatible browser to test the application under development.

• Webcam: At least one webcam is necessary to test the MFSS.

• Git client: A git client software is necessary to work with remote BCDS GitLab
code and report repositories.

32

• Source code editor: A source code editor is required for both code development
and reports writing. It would be better if all testing environments use the same
editor.

• Latex software and packages: It is necessary to install the Latex software and
libraries to all testing environment computers to compile the report and visualize
the resulting document.

• Code compilers/runners: Code compilers and runners are essential for code
testing during the development. Those have to be replied in all testing computers
and differ depending on future technologies and programming language choices.

• Other devices with a browser, webcam, and microphone: Other devices
are expected to test some application functionalities, such as room conferencing.
These devices would access the application through a browser inside a local LAN
network, and use a webcam and a microphone to participate in room conferencing.

• OS distributions: The host OS distribution must be Linux, Mac OS, or Windows.
They have to be desktop based distributions to be able to run Latex and use most
of the source code editors, compilers, and browsers.

Figure 10: Testing environment.

5.2.2 Production environment

The production environment preparation is a part of S8 sub-project. This environment is
the production service scope where the Meetings Web-based Application MWA is main-
tained after the deployment.

The environment could be installed and replied, although MWA is deployed only
in one server. Each time a new stable version of MWA becomes available, all changes
are pushed to the project Git repository, and then the production server automatically
updates, compiles, and executes the code.

Figure 11 illustrates graphically the production environment. The production en-
vironment could be implemented under different OS distributions, although they must
meet at least the following requirements:

33

• Internet connection: An internet connection is necessary to enable remote con-
nections for maintenance purposes, software and security updates, and client con-
nections to serve and make use of the software.

• Git: Git client software is necessary to work with the project remote Git repository
to receive MWA updates.

• Code compilers/runners: It is essential to have code compilers and runners for
an efficient production code generation, execution, and deployment. These code
compilers and runners differ depending on future technologies and programming
language choices.

• Daemon managers: The host must guarantee the software availability and failure
recovery. In the case of a software crash or system restart, it is necessary to configure
a trusted daemon system that can restore the software automatically.

• Security considerations: As the production server hosts the MWA it is crucial to
take the required legal actions, and reliable methods to ensure proper data security
(e.g., integration, encryption).

• OS distributions: The host OS distribution must be Linux or Windows and
server-based (without GUI), which serves necessary files and execute the MWA
optimally.

Figure 11: Production environment.

5.3 Project associates

The following description shows the project-related people team:

Dr. Jose Luis Marzo Lazaro
End-of-degree project supervisor.

Jose L Marzo is a professor at the Department of Computer Architecture and Tech-
nology at Girona University and leads the BCDS research group [17].

David Mart́ınez Álvarez
Computer engineer student at Girona University, as the project owner.

34

6 System requirements

System requirements are defined according to project objectives and the desired final
environment. As the Project objectives section explains, the project objectives are:

1. Exploring and studying modern and efficient technologies for use in the MFSS.

2. Finding MFSS core tools that fill the project purpose or implementing a new one.

3. Developing a simple and functional application (MWA) SaaS -based to provide
MFSS meetings services to those companies who want it.

4. Deciding some commercial aspects of MWA, such as names, value proposition, and
service plans.

5. Providing understandable code implementations and complete documentation.

The final environment represents a scenario generated with the objectives. System
requirements have to be defined to achieve the definitive environment, grouped into func-
tional and non-functional ones. This section contains only the requirements definition,
as they are analyzed later with more detail in the System requirements analysis section.

6.1 Functional requirements

The functional requirements define what the system can or cannot do. They are enumer-
ated as FR-x, where x is the requirement number:

FR-1 The server has to switch and forward multimedia flows. It receives multiple
media streams and then decides which of those media streams has to be sent to
which system agent.

FR-2 The server can perform Multimedia features, such as room conferencing through
peers.

FR-3 The server can establish connections with all agents using socket-like protocols.

FR-4 The system shall block or restrict users from access to certain Multimedia features
if their company service plans do not allow it.

FR-5 The system shall block unauthorized users from access to their companies confi-
dential data, settings, and management.

FR-6 A room closes after a few seconds of all participants left.

FR-7 In-room users have access to an invitation key.

FR-8 It is not possible to erase previous recordings. However, they are automatically
deleted after some time.

FR-9 Any external company interested in joining the community can apply for a service
plan through the web interface.

35

FR-10 Companies are capable of creating and managing as many users as their service
plan allows.

FR-11 Companies can manage their user’s authorization levels.

FR-12 It is essential for users to verify their accounts after creation. A mechanism allow
users to set their credentials and accept the terms of use and privacy policy.

FR-13 Authentication is required. The system requires users to provide credentials to
log in.

FR-14 Tokens allow users to keep logged sessions.

FR-15 Users can manage their profiles.

FR-16 Users can use all the Multimedia features allowed by their companies service
plans.

FR-17 Authorized users can manage their companies providing confidential data, set-
tings, and management.

FR-18 Authorized users from system authorized companies would be able to create new
companies and manage their service plans.

FR-19 Users can create rooms providing some room settings.

FR-20 Users can visualize their room activity history of created and participated ses-
sions.

FR-21 Users must provide at least the invitation key to join a room.

FR-22 To access Restricted rooms, users must provide the invitation key but must
belong to the same company as the room creator user.

FR-23 Inside a room, users can change their video webcams at any moment.

FR-24 Users can manage recording settings (type and set authorization) if their com-
pany service plan allows it.

FR-25 Users can access an open record if they have participated in it. They can access
a restricted record if the creator user is from the same company.

FR-26 Authorized users can access to all recordings of their company users.

FR-27 Authorized users can change their companies service plans through the web in-
terface.

FR-28 Authorized users from system authorized companies can modify service plans
templates.

36

6.2 Non-functional requirements

The non-functional requirements define how the system should be. They are enumerated
as NFR-x, where x is the requirement number:

NFR-1 Via an analysis of some marketing aspects, such as names, logos, and service
plans, the system has to be more prepared for the production launch.

NFR-2 A business analysis show if the application is commercially feasible.

NFR-3 The project does not have to contemplate any payment logic.

NFR-4 The system has three service plans that are named as the market study sug-
gests, ordered from lower to higher services.

NFR-5 The server must work with limited hardware resources and be scalable.

NFR-6 The server API must be developed following API REST standards.

NFR-7 All data (e.g., companies, users, and recordings) must be stored correctly.
Sensitive information, like passwords or classified meeting recordings, must be
secured using cryptographic procedures.

NFR-8 In case of a security breach and sensitive information exposure, the system
must guarantee that the time needed to extract the sensible data are longer
than the information life span.

NFR-9 All data must remain intact in case of failure.

NFR-10 The web interface has to be cross-platform following a responsive design.

NFR-11 The web interface design must be user-friendly and easy to use.

NFR-12 The system is required to have a 99.99% availability.

NFR-13 The service has to be suitable and easy to install.

NFR-14 The application code has to follow the chosen programming language practices.

NFR-15 Minimal and clear application documentation must be provided.

NFR-16 The application must fulfill all Spanish and European legal requirements.

37

38

7 Studies and decisions

7.1 Hardware

With the working environments exposed in the Environments definition section, it is
necessary to specify which hardware is used.

The following description shows the three computers used in the development phase
in which the testing environment is installed and their respective principal hardware
resources:

Home computer
Tower desktop computer at home. It has a Intel Core i5-7600K CPU, 16GB RAM
and 1TB free space. It is under a 1000MB optical network.

Notebook computer
Xiaomi Notebook Pro computer. It has a Intel Core i5-8250U CPU, 8GB RAM
and 150GB free space. It is commonly under wireless networks, being used in many
places.

Work computer
Tower desktop computer at BCDS research group. It is under a 100MB network.

For deployment, a virtual server is prepared, and its resources are configured according
to production software requirements, explained in the Deployment and results section.

7.2 Multimedia Flow Switch Server

This section analyzes all the MFSS related studies and decisions. This study matches with
the technology study for MFSS S2 sub-project, performed after the testing environment
preparation S1 sub-project.

7.2.1 WebRTC Technology

Web Real-Time Communication[19], named as WebRTC, is a technology developed by
Google and released in May 2011. This technology supports browser-to-browser commu-
nications for voice calling, video chat, and peer-to-peer (P2P) sharing without the need
for internal or external plugins. Currently, Chrome, Firefox, and Safari browsers have
native WebRTC support, via simple APIs.

Before WebRTC, there was no free, high quality, complete solutions available which
enable this somewhat meaningful browser communication. WebRTC does not need a
server to perform a multimedia communication, and it could be directly sent via P2P.
The problem here is that a large number of user computers are under firewalls, making
P2P connections hard to succeed.

39

WebRTC technology is widely used for performing peer-to-peer real-time multimedia
transfers, following a P2P low-level communication architecture. This P2P architecture
can be materialized through direct peer connections or with an intermediary server, which
enables additional advantages.

WebRTC Advantages

• Powerful: It is simple to add WebRTC to websites and mobile applications com-
pared to other existing technologies.

• Open source and active: Most of the top technology companies (e.g., Google,
Mozilla, Apple) are actively contributing and working together to keep this project
alive, correcting bugs, or developing new functionalities.

• Video, audio, and data: WebRTC not only provides a video and audio channel.
Moreover, it creates a data channel.

• Trusted: WebRTC is trusted by the Internet community and is frequently evolving
and improving. It has a strong dedication over the last 4 or 5 years.

WebRTC Disadvantages

• Scalability: WebRTC is efficient in peer-to-peer communications with no interme-
diary servers, although it is natively not scalable. The problem occurs considering
multiple video calls scenarios, which is this project case.

• Complexity: WebRTC has a large number of complex definitions and proto-
cols, making it rather difficult to understand, especially for newcomers. Different
browsers, codecs, plugins, ICE, SDP, and other acronyms are some of those defi-
nitions, making it difficult to understand. The most used codecs in WebRTC are
H264 or VP8, although there is not a single answer. There are more different codecs
options depending on the browser and its WebRTC implementation.

• Browser dependency: Although WebRTC is available at most of the browsers, it
is not available at less used ones. It is mandatory to have WebRTC implementation
and regular maintenance to be up to date frequently, or at least a trusted external
plugin.

All network communication technologies suffer from security concerns, and WebRTC
is not an exception. Currently, this technology is known as the most secure one. However,
it is imperative to be aware of what security and privacy issues can affect WebRTC.

40

7.2.2 NAT problem

The IPv4 Internet addresses are still present, and it is unknown when it will be replaced
by the new IPv6. While IPv4 present, WebRTC technology has to deal with the NAT
problem.

NAT stands for Network Address Translation. It is a widely used mechanism for
preserving IPv4 addresses and giving local network admins control of their local topology.
Many NAT techniques exist, although the most common NAT device works by changing
IP header information of packets passing through it.

In many home routers, the NAT techniques are complemented with firewalls, providing
security and preserving IPv4 address space at the same time. This causes problems for
WebRTC, which attempts to communicate peer-to-peer. The most used NAT technique
is the Symmetric NAT.

A host on the LAN can send a packet to a host on the Internet. However, it is not
possible to receive a packet from the Internet, trying to reach the LAN host. In other
words, the NAT device blocks the packet from passing through. If no packets could reach
from the Internet to a host on the LAN, WebRTC and any other IP based communication
would not work.

Essentially, the communication must be initiated by the host on the LAN. NAT
process is applied at the packets proceeding through the NAT device. The Symmetric
NAT device changes the source IP and port of the packet, to a new source IP and port.
It saves this binding between the inside source IP and port, and the outside source IP
and port. This is known as a NAT binding, stored in a table at the NAT device.

NAT makes peer-to-peer connections impossible. The client inside a NAT network
thinks it is reachable on one address. However, others cannot establish a connection with
it, as it is blocked by the NAT device.

The Interactive Connectivity Establishment (ICE) is used by WebRTC to solve the
NAT problem [20]. ICE is a framework that allows WebRTC to overcome the complexities
of real-world networking. ICE can find the best path to connect peers. It may be able to
do that with a direct connection between the clients. However, it works for clients where
a direct attachment is not possible (e.g., NAT networks).

In the case of Asymmetric NAT (less common), ICE uses a STUN (Session Traversal
Utilities for NAT) server. A STUN server allows clients to discover their public IP
address and the type of NAT they are behind. This information is used to establish a
media connection. The STUN protocol is defined in RFC 3489. In most cases, a STUN
server is only used during the connection setup, and after an established connection, the
media flows directly between clients.

41

If a STUN server cannot establish the connection, ICE can use TURN. Traversal
Using Relay NAT (TURN) is an extension to STUN that allows Symmetric NATs to
work with WebRTC. A TURN server remains in the media path after the connection has
been established, relaying the media between the WebRTC peers. Figure 12 illustrates
the ICE process in case of a client under Asymmetric NAT (STUN) and Symmetric NAT
(STUN + TURN).

(a) Asymmetric NAT (STUN). (b) Symmetric NAT (STUN+TURN).

Figure 12: ICE process cases.

7.2.3 WebRTC Media Server

Scalability in peer-to-peer WebRTC communications is not a problem, although it is in
a multiple participant conference. While it is true that it is tolerable to hold multiple
peer calls using peer-to-peer communications, it stops being practical as the number of
participants increase. In this case, a single participant has to send local multimedia flow
streams (video, audio, or data) to every participant, and receive all remote streams from
the other ones.

Generally, it is considered that a peer-to-peer meeting conference starts becoming
unusable in more than a five participants conference, even though it depends on the
participant’s bandwidth. Here is where WebRTC Media Servers can highlight as they
help reduce the number of sending participant streams, usually to one. They could even
decrease the volume of received streams from remote participants (depending on the
media server capabilities).

There are mainly three architecture types of WebRTC communication Media Servers:
P2P (peer-to-peer), SFU (Selective Forward Unit), and MCU (Multipoint Control Unit).

42

In multi conferences, using P2P communications with each remote participant (from
now Rp) result in 2 ∗ Rp flows (Sending Rp and receiving Rp). With an SFU or MCU
Media Server in action, all these scalability problems are drastically reduced by, at least,
a half. If the selected server is an SFU model, then the client only needs to send one
flow and receive Rp (Rp + 1 total flows). If the selected server is an MCU model, then
the client only needs to send one flow and receive another one. However, the server has
to multiplex all remote flows to one and send it to the participant, which implies more
additional load on the server.

For example, it could be considered a 4 clients meeting case, shown in Figure 13.
With the P2P model, it is mandatory to have 2 ∗Rp = 6 open flows for each client. With
the SFU model, this number could be reduced by half, having Rp + 1 = 4 open flows for
each client. Finally, the MCU model could reduce these flows to two (send and receive
ones) for each client.

Figure 13: WebRTC Media Server architectures: P2P, SFU and MCU.

Although the MCU model seems better in scalability terms, it could expose the server
to have substantial loads and sizable hardware technical requirements. As client require-
ments explicitly enhance the throughput-simplicity ratio, and Internet speed connections
are regularly progressing, the SFU model fits better with this project requirements.

7.2.4 Decisions

The meeting functionality is the most relevant customer requirement. The previous
studies result in the SFU model to be the chosen technology for the MFSS, completing
the S2 sub-project. Using a WebRTC Media Server provides all the previously describes
advantages. Besides, the NAT problem is no longer a problem, and the MFSS does not
have to use ICE solutions (e.g., stun, turn). Now, it is necessary to perform an analysis
of existing free or open frameworks that implement an SFU architecture to integrate it
later at the Multimedia Flow Switch Server MFSS S3a sub-project.

Many existent frameworks implement WebRTC Media Servers in most programming
environments (e.g., C, node.js, php). The server has to be simple and scalable, which
implies that it has to perform its communications efficiently for a meeting environment.

43

There are many media servers implementations, providing some functionalities that
almost a regular user uncommonly uses. These functionalities only slow down the server
throughput and do not contribute a noticeable benefit. In the most common cases
(≈95%), the server only needs to offer these following functionalities:

• Signaling protocol: The server needs to establish peer-to-peer connections with
remote participants. A signaling protocol is required to start those connections and
manage them.

• Media flow handler: The handler is the core of WebRTC Media Servers. It
contains the flow switch logic.

• Ability to record sessions: Another relevant customer requirement is to record
meeting sessions. It is necessary to manage session flows and redirect them to a
multimedia endpoint, which processes them later.

It is essential to choose an ideal option according to customer requirements and pre-
vious studies. The following list shows some of the best and most used frameworks that
perform WebRTC media Servers [21], being its main features compared in Table 6:

Intel Collaboration Suite for WebRTC: Include server SDKs (SFU and MCU)
and client SDKs (JS, Android, iOS, and Windows). The MCU/SFU is Licode-
based. The main problem of this technology is that it is not Open Source and is
not possible to modify any server behavior.

Janus: Janus core is only a WebRTC gateway. It is not possible to achieve MCU
or SFU itself, but a large number of packets and plugins can be added to expand
its functionalities, being able to implement an SFU, MCU, and recording.

Licode: Originally it was an MCU, although it can now behave as an SFU. It was
used by Intel as a base of their Intel Collaboration Suite core and is implemented
all in the C++ programming language.

MediaSoup: MediaSoup [22] is one of the newest open-source technologies, and
it is all implemented in C language wrapped in JS. This is the unique option ex-
posed that does not natively support the record functionality itself. Since the last
version launch, it is easier to redirect flows to a multimedia endpoint for external
processing. This flexibility opens many options, being possible to choose any media
manipulation software.

44

Table 6: Main WebRTC media servers frameworks.

According to the studied options, an ideal solution is the MediaSoup SFU. It provides
a simple JavaScript API that can be used in node.js for server-side as well as an intuitive
JavaScript API for client-side, named as mediasoup-client. The multimedia flow switch
is implemented using the C language, which is more efficient than other pure JavaScript
libraries.

45

7.2.5 MediaSoup SFU Server

Before starting any implementation, it is essential to analyze and understand how Medi-
aSoup works.

MediaSoup is developed and maintained by Versatica organization, formed by two
Spaniard developers:

• Iñaki Baz Castillo, as the main project contributor.

• José Luis Millán, as a project contributor.

MediaSoup SFU receives multimedia streams from every participant in a meeting and
relays them to everyone else (flow forwarding). This design leads to better throughput,
performance, and less latency compared to other SFU or MCU existent implementations.
It is highly scalable and requires fewer resources. The striking point about separately
receiving other participants media is that they can have a personalized layout, being
possible to choose which stream to render and how to display them.

According to MediaSoup official website, the main goals of MediaSoup SFU are the
following:

• Be a WebRTC SFU.

• Be a node.js module in the server-side.

• Be a tiny SDK in the client-side.

• Be minimalist just handling the media layer.

• Expose modern and updated APIs in both client-side and server-side.

• Support all current WebRTC browsers.

Other arguments for MediaSoup choice are that (unlike other existing SFU) it is a
module that can be integrated into a bigger application, that is accurately what this
project needs. It has other significant technical features like:

• Many multimedia streams over a single ICE and DTLS transport.

• All connections are IPv6 ready.

• The WebRTC connections can be performed over UDP and TCP transmission pro-
tocols.

As said previously, MediaSoup has an agile team that periodically launches new fea-
tures and correct bugs. The MediaSoup v3 has been launched recently and in parallel
with this project elaboration, on 1st May 2019. The server is developed with the new v3
version that includes a large number of new features and performance improvements.

In order to understand MediaSoup SFU server architecture, Table 7 shows all the
necessary vocabulary.

46

Table 7: MediaSoup vocabulary definitions.

Figure 14 illustrates an example of MediaSoup SFU server architecture. The first
worker hosts router 1 and router 2. Router 1 has one producer participant producing
video and audio, and two consumers, one participant that consumes audio and video
from the router, and a recording endpoint that consumes audio. Router 2 has one video
producer broadcaster. As said previously, workers can transfer multimedia flows between
them, enabling fully scalable designs. Router 2 transmits its video to router 3 and router
4 (A transport consumes audio from router 2 to router 3, and another one from router 2
to router 4). Then, both routers 3 and 4 (from workers 2 and 3) have two participants
that consume video from their respective routers. This design opens many scalability
possibilities, being able to divide or join routers with at execution time depending on the
meeting hardware demands.

47

Figure 14: A MediaSoup architecture representation example (3 workers and 4 routers).

After internal discussions with the development team, v3 roadmap was defined to
improve almost all MediaSoup code, functionalities, and usage. The following points
compare MediaSoup v2 with v3, to learn more about how MediaSoup works:

• MediaSoup v2 is based on peers. A peer is just a wrapper that holds transports,
producers, and consumers. These peers are artificial and exist at node.js level,
although they do not exist at the C++ level. Those peers require unnecessary
data structures that provide no real benefit. In v3 version, those peers are not still
present, and it is up to the application to manage the concept of peers if required.

• MediaSoup v2 depends on opaque messages (called MEDIASOUP PROTOCOL)
generated by both client-side and server-side that must be blindly exchanged be-
tween both without the application being aware of what those messages mean. In
v3 there are no longer these messages and provides real JS API calls for both
mediasoup-client and mediasoup to create and manage transport, producers and
consumers.

48

• MediaSoup v3 makes possible to listening for RTP packets in multiple IPv4 and
IPv6 addresses, making possible to run different transports at different IPs.

• It is possible in v3 to easily inject/extract external/internal multimedia from sources/end-
points such as ffmpeg, gstreamer, and more without requiring mediasoup-client.

• Each MediaSoup v2 room simply uses a single worker and a single CPU. This works
well with hundreds of participants, although it does not scale well for broadcasting
scenarios with few producers and many (> 500) consumers. MediaSoup v3 makes
broadcasting scenarios possible by allowing a room to use N media worker sub-
processes.

• In v3 rooms changed their name to routers.

• MediaSoup v3 implements sender-side bandwidth estimation to automatically ac-
commodating the total transport bitrate to the bandwidth available in the receiver
endpoint.

It is essential to test MediaSoup software to guarantee its correct behavior and ef-
ficiency. The same MediaSoup development team has a demo application example [23]
available for testing as an additional component. After some code analysis and configu-
ration testing, software behavior and efficiency meet the expectations. Some parts of this
demo application are used as a reference for the Multimedia Flow Switch Server MFSS
implementation.

7.2.6 Software libararies

Table 8 shows all libraries used in the MFSS. Basically, it needs MediaSoup required
libraries and some package to work with system free ports.

Table 8: Libraries used in the MFSS.

49

7.3 SaaS -based application

The Software as a Service (SaaS) based application studies is a part of the S6 sub-project.
It is elaborated following modern and web-based technologies. Desktop applications were
the most popular software development platform at the beginning of the twenty-first
century, although now they are becoming outdated. Web applications provide many
benefits compared with a traditional desktop application:

1. Desktop applications have to be deployed in each client computer, and web-applications
avoid that.

2. Updates and bug fixes are easier following the same argument as deployment.

3. Web applications can be accessed from anywhere and are platform-independent. It
only needs a web browser with JavaScript.

4. Support and maintenance are easier following the same argument as deployment.

5. Web applications can handle more versatile user interface designs in small devices.

Web applications only have the main disadvantage of an Internet connection require-
ment (It does not affect the SaaS -based application, as WebRTC connections need In-
ternet connectivity).

Following the most common architecture at Web applications development, it is com-
posed by a back-end RESTful API server and a front-end client interface application.
The client interface runs at clients browsers through HTML, CSS, and JavaScript, and
performs API calls to communicate with the back-end.

7.3.1 Back-end

The back-end API can be developed in many programming languages like PHP, Python,
or node.js. The database can be SQL or NoSQL. The back-end is implemented in node.js,
mainly for the following reasons:

• MFSS is developed in node.js to be able to run the Mediasoup server. As later the
SaaS -based application has to be integrated with MFSS, using the same program-
ming language avoids some significant communication problems.

• Personal experience for previously developed production node.js back-end servers.

• Developing MFSS and SaaS -based application in JavaScript simplifies the whole
procedure, and the same code practices can be followed. It matches with the simplic-
ity requirement. Furthermore, it matches with the Personal Extreme Programming
(PXP) methodology.

SQL and NoSQL are possible options for the database. As defined in the Framework
and background knowledge section, the main difference is that an SQL DB uses a strict
schema and SQL processing language and NoSQL ones are unstructured and usually
easy to work with object modeling. This project DB uses MongoDB NoSQL DB for the
following reasons:

50

• A NoSQL DB does not need to learn an additional programming language, such as
SQL.

• NoSQL is highly scalable, works faster, and with fewer resources than SQL ones
(especially for a large amount of data).

• MongoDB is currently the most used NoSQL database. It is open-source and
document-oriented that fits perfectly with project customer requirements. More-
over, it uses JSON like documents to store any data, that fits perfectly with node.js.

• There are some node.js additional libraries that enable to interact with MongoDB
directly with JavaScript objects, that fits perfectly with project simplicity require-
ment and with PXP methodology.

Once the server programming language and its database are defined, it is necessary
to define which node.js additional libraries to use. Table 9 shows all libraries used in
the SaaS -based application back-end.

Table 9: Libraries used in SaaS -based back-end.

51

7.3.2 Front-end

The SaaS -based application is developed using HTML, CSS, and JavaScript. HTML
language defines the webpage content, the CSS its style, and JavaScript the logic.

JavaScript is in charge of providing user interaction, API back-end interaction, and
HTML content generation. JavaScript can easily interact with HTML content using the
Document Object Model (DOM) [24]. When a web application is loaded, the browser
creates a DOM of the page constructed as a tree of Objects, as shown in Figure 15.
With the object model, JavaScript can create, change, and remove all HTML elements
and attributes. Furthermore, it is capable to change CSS styles.

Figure 15: Example of a DOM (Document Object Model) tree.

The API logic implementation, styles, and HTML DOM interaction are parts of a
complex system, impossible to implement at the scheduled time and much less in a solo
project. To avoid this problem, many helper JavaScript frameworks and libraries are
available and regularly increasing.

Choosing an appropriate JavaScript framework is not trivial. The following descrip-
tion analyzes the top 3 JavaScript frameworks of 2019 and its usage statistics[25]:

React
React is a declarative JavaScript library used for building interactive UIs. It was
created by Facebook engineer Jordan Walke and launched in May 2013. It has
overtaken Angular and established its dominance. Although it is not technically
a Framework itself, React can create reusable user-interface components for each
state that can automatically update and render data without need of reloading the
page.

Usage Statistics:

• Current websites running React: 475K.

• JavaScript developers that are using React: 64.8%

• State Of JS survey ranking: 1st.

• GitHub statistics: 120.5k stars, 21k forks, and 1200 contributors.

52

Vue Vue is an open-source JavaScript framework that was created by an independent
engineer Evan Yoy and released in 2014. The last years have increased its popularity
outpacing Angular. Vue has a progressive nature that helps it to adapt to the
developer’s needs and offers a lightweight solution incorporating all of the best
features and practices.

Usage Statistics:

• Current websites running Vue: 64K.

• JavaScript developers that are using Vue: 28.8%

• State Of JS survey ranking: 2nd.

• GitHub statistics: 125k stars, 18k forks, and 253 contributors.

Angular
Angular is a front-end web application framework based on typescript. Launched by
google engineers in 2010 and updated in 2016, and it is the oldest modern JavaScript
framework.

Usage Statistics:

• Current websites running Angular: 350K.

• JavaScript developers that are using Angular: 23.9%

• State Of JS survey ranking: 3rd.

• GitHub statistics: 44.5k stars, 11.5k forks, and 840 contributors.

Based on the description of the frameworks, the front-end is developed with React.
React is chosen mainly for the following reasons:

• Prior personal experience: Prior experience on React project development and
production deployment.

• High-performance: React is known for its flexibility and efficiency.

• Abundant resources: Maintained by a sizable company like Facebook provides
substantial documentation and resources.

• Rich community: React JavaScript framework has now the larger developers
community.

• Popularity: More than half of the JavaScript developers use React. It is in the
first position at State Of JS survey ranking.

It is crucial to follow a design methodology to create user interfaces efficiently. A
methodology has to be selected from existing ones, as they are studied and proven by
design experts. The current most popular design methodologies are:

Bootstrap
This framework was born in 2012. Twitter took its social network graphic style
complemented with some JQuery (Javascript DOM interaction library) features to
create a solid base to begin any web design project.

53

Material Design
This framework was developed in 2014 by Google. It is not a framework itself, as
it offers a style guide for applications. From those style definitions, a large number
of implementations for different environments were born. Material UI is the React
component implementation of Material Design.

During 2018, Google’s Material design usage has been increased, and Bootstrap has
been started to lose popularity. React has implementations for both Bootstrap and
Material Design. Material Design is becoming popular, especially for mobile applications.
For this reason, it is the chosen design methodology for the SaaS -based software.

At this point, enough information is set to define which JavaScript additional libraries
are used at project implementation. Table 10 shows all libraries used in SaaS -based
application front-end with a little brief description for each one.

Table 10: Libraries used in SaaS -based application front-end.

54

7.4 MWA: MFSS integration with the SaaS -based application

The Meetings Web-based Application (MWA) is composed by the Multimedia Flow
Switch Server (MFSS) integration with the SaaS -based application. It is essential to
study which communication architecture would be better to use, obtaining an ideal
throughput. This integration is a part of the S7 sub-project.

The most viable form is to integrate the MFSS and the SaaS -based application API
(back-end), as they are developed through Node.js programming language. It generates a
new piece of software, becoming the final MWA back-end. All the final MWA application
client (front-end) requests pass first through SaaS -based application API, which verifies
authentication, authorization, and some additional parameters. In other words, if the
MWA front-end wants to start Web Sockets communications with the MFSS (essential for
meetings management), then it needs the API approval. Figure 16 illustrates graphically
the whole MWA planned architecture.

Front-end Back-end MFSS

REST API
Web Socket Integration

Figure 16: MWA planned architecture.

7.5 Git client choice & practices

Git Client software is necessary to work on multiple physical computers. One popular
and flexible Git client is GitKraken, a software used to work with git repositories. The
following list shows the main GitKraken features:

• Intuitive UI/UX.

• Merge conflict editor.

• Built-in code editor.

• Task tracking.

• GitHub, GitLab, Bitbucket, and Azure DevOps integration.

• Gitflow support and file history visualization.

GitKraken is not free software, although it has a limited free version. The free version
can do all the actions required for this project elaboration. It can work with remote self-
hosted GitLab services, being able to be linked with the BCDS GitLab service. Figure 17
illustrates the main GitKraken user interface, with an example of this project repository,
associated to BCDS GitLab.

55

Figure 17: GitKraken project interface visualization.

The project followed Personal Extreme Programming (PXP) does not specify any git
practices, alleging that they are not relevant in solo projects. Consequently, neither of
the most common git methodologies (based on co-working) is used, although some clear
rules are used, although some clear rules are applied. The following list shows the used
rules:

1. Commit format: When a new feature is completed, a commit composed by a
title and a body is placed in the Git repository. The title and body describe the
version changes. The title starts with a tag, that describes if the new version has a
completed new feature (DONE), or it has some pending work (WIP). The title is
followed by a short description (≈20 characters). A commit body message contains
a detailed list of all done and pending tasks.

Figure 18 illustrates a message format example from BCDS GitLab repository
exposing the finalization of one task.

2. Branches distribution: As this is a solo project, two master and dev branches
are sufficient. All the development is typically performed at the dev branch, and
each time a major feature or update is completed, the dev branch work is merged
into master.

56

Figure 18: Commit format example.

7.6 Documentation practices

The project documentation differs from the most common documentation practices, that
are mainly dedicated to team development (e.g., Doxygen[18] syntax, practices). The
established procedure follows common sense and previous personal methods, defined by
the following rules:

1. The top of each source code file must contain a descriptive comment with the
following content, as exposed in Figure 19.

• First line with the main project name. It is common at all files and contains
exactly the text “Multimedia Flow Switch Service R©”

• Second line with an author copyright notice. It is common at all files and
contains exactly the text “Copyright c© 2019 David Mart́ınez - All rights re-
served”

• Third line with a brief description of what the file code does.

2. A section title introduces the additional software libraries and files imports. It
contains exactly the text “*** LIBRARIES AND FILES IMPORTS ***”.

3. Another section title introduces the remaining code. It contains exactly the text
“*** CODE BEGINS HERE ***”.

4. A multi-line descriptive comment is placed at the beginning of each code function,
before its description. The comment explains in a few words what the function
does, with its entry parameters and return definition.

5. Before each library or file import, a one-line comment is placed to explain what the
library or file does and what it is needed.

6. In most functions, the code is easily understandable, being its performed tasks
easily deducted. In the case of complex code pieces, a simple line of code is placed
before the piece to explain what the source code part does.

57

Figure 19: Top code file comment example (main server file).

7.7 Source code editor choice

As previously exposed in the Environments definition section, it is necessary to choose an
appropriate source code editor for both programming and report writing. The following
description analyzes the top 2019 editors [13]:

Visual Studio Code
Visual Studio Code (VS Code) is a free, open-source, and cross-platform code editor
developed by Microsoft. It is the most used code editor in 2018, being used by more
than 34.9% of the developers. VS Code is a relative newcomer text editor (since
2015) and the most powerful and customizable one through its plugin system. It
offers support to OSX, Windows, and Linux OS distributions.

Atom
Atom is a free, open-source, and cross-platform code editor that was released in
2014, now owned by Microsoft. It has a nice plugin system, although it is not
at the same level as VSCode. It offers support to OSX, Windows, and Linux OS
distributions.

There is another source code editor called Sublime Text, although it is not as well-
known as the previous ones. It is not analyzed as is proprietary software, and free software
is prioritized as said in the Feasibility study section.

VS Code is a lightweight and powerful source code editor, and it is half-way between
a text editor and an IDE. VS Code is the project chosen source code editor mainly for
the following reasons:

• It comes with built-in support for JavaScript, TypeScript, and node.js (auto com-
pletion, syntax, and debug). Those supports are helpful in Meetings Web-based
Application MWA development.

• Its plugin system is reliable, and the plugins are generally more maintained than
other source code editors ones.

• Having tried both VS Code and Atom, the first one is more fluid and efficient under
the same hardware.

At this point, it is possible to define which VS Code extensions are used. Table 11
shows the packages used name, version, and functionality.

58

Table 11: VS Code packages used.

7.8 Final software used and technical requirements

The MWA application is developed using all the previous defined software. Table 12
shows those software together with their respective technical requirements.

Table 12: All used software and their corresponding technical requirements.

The software requirements showed at Table 12 are easily satisfied in all cases, taking
into account the specified hardware in the Testing environment section.

59

7.9 Marketing study

This section performs a simple marketing study, deciding commercial Meetings Web-based
Application (MWA) properties. This study does not follow any known methodology and
is performed following a deductive analysis of some MWA aspects. The marketing study
is one of the S5 sub-project tasks, in particular, the S5.1 task.

7.9.1 MWA name

The first task is to search and choose an appropriately engaging name. The name is
related to the Meetings Web-based Application (MWA) purpose. To achieve that an
online business name generator [26] has been used to generate possible names making
plays on words.

The current name for the entire application is Multimedia Flow Switch Service, known
as MWA. Analyzing the first name words separately, it seems that the word flow opens
many name combinations. After flow word as input at the online business name generator,
the results show an attractive name: Flowescent. It is a word composed by flow and
fluorescent words, which matches perfectly. This name can be fluidly pronounced, and it
is engaging. Consequently, it has been chosen as MWA name. From now on, the entire
project application is called both MWA and Flowescent.

7.9.2 User interfaces design

The front-end user interfaces are designed using Google’s Material Design guidances.
The interfaces are designed at System analysis and design section, although as part of
the marketing study, it is necessary to define the entire application standard appearance.
Many open-source React Material Design templates are available to use as a start point.
With some prior knowledge about React, it is possible to analyze a base template and
adapt it as needed.

After a search process, the material-sense[27] React Material Design is the chosen
Meetings Web-based Application (MWA) front-end template, as Figure 20 illustrates.
This is a React Material UI (React Google’s Material design implementation library)
simple template, showing a rich application example with wizards, charts, and ranges.
This template is enough as an interface start point, and it is more lightweight than the
other candidates.

60

Figure 20: material-sense React Material UI template.

7.9.3 Logos

Logos are an essential part of a commercial product, as relevant designs typically catch
more interest from customers. The principal Flowescent logo is defined based on the
naming semantics. The objective is to design a central corporative logo and a favicon. A
favicon is a little image shown at the browser page tab, together with the page title.

Neon lights are considerably related with Flowescent semantic. The bright light rep-
resents the fluorescence and tubes. The multimedia flows can be represented with some
neon-based color palettes. These arguments result in a fluorescent neon colored text logo.

A neon-based font text and design software are necessary to make the logos. The
design software used is Gimp [28], a free image manipulating software, licensed as freeware
and developed by Spencer Kimball and Peter Mattis. The used neon-based font is Library
3 AM [29], as Figure 21 illustrates, licensed as freeware and developed by Igor Kosinsky.

61

Figure 21: Library 3 AM font.

It is necessary to design an appropriate dynamic neon-based color palette for applying
it in the text logo, together with the Library 3 AM font. Inspired by the prism trend, one
of 2019 creative trends is the color palette as Figure 22a illustrates, which is a dazzling
take on popular rainbow tones. This palette should catch the viewer’s attention, although
four colors are no sufficient for all the textitFlowescent word characters. For this reason,
it is adapted using middle colors. Additional color is placed between each color obtaining
the definitive color palette.

(a) Original 4 colors palette. (b) Adapted 10 colors palette.

Figure 22: Flowescent corporative logo colors palettes.

With all studied components applied, the Figure 23 illustrates the resulting final
Flowescent corporative logo.

Figure 23: Flowescent corporative logo.

62

The first corporative logo letter F is user for the favicon logo, as Figure 24 illustrates.

Figure 24: Flowescent favicon logo.

7.10 Business feasibility study

A feasibility study [30] provides an investigating function, addressing the question of “Is
this a viable business venture?”. It helps narrow the scope of the project to identify some
of the best business scenarios. The business feasibility study is one of the S5 sub-project
tasks, in particular, the S5.2 task.

The following list provides some reasons to do a feasibility study:

• Gives focus to the project and outline alternatives.

• Narrows business alternatives.

• Identifies new opportunities through the investigative process.

• Identifies reasons not to proceed.

• Enhances the probability of success by addressing and mitigating factors early on
that could affect the project.

• Provides quality information for decision making.

• Provides documentation that the business venture was thoroughly investigated.

• Helps in securing funding from lending institutions and other monetary sources.

• Helps attract equity investment.

It is important not to confuse this study with the Meetings Web-based Application
(MWA) feasibility study. The MWA feasibility study only focuses on the feasibility of
the software based on technical, technology, legal, and economic considerations. Instead,
the business feasibility study evaluates the eventual company that may commercialize
the software.

63

7.10.1 Value Proposition

A value proposition refers to the value that a company promises to deliver to customers
should they choose to buy their product. Furthermore, a value proposition is a declaration
of intent or a statement that introduces a company’s brand to consumers by telling them
what the company stands for, how it operated, and why it deserves their business.

As said in the Motivations and purpose section, Flowescent wants to put aside con-
ventional face-to-face business meetings. This is the main purpose of the system and has
significant commercial potential, being an ideal option to choose as a value proposition.

The following list exposes the main advantages of online meetings in front of tradi-
tional face-to-face meetings:

1. People attending the meeting do not need to leave their work station or wher-
ever they are. They can attend meetings.

2. With virtual meetings, distance is not an issue. People can take part in the con-
ference regardless of where they are. In other words, they can hold meetings
without having to travel all the way.

3. Many people can participate in a virtual meeting since they only have to set
aside some time for the meeting.

4. The carbon footprint is reduced since people do not have to travel.

5. Virtual meetings are cheap. Although the software service has its costs, it eventu-
ally becomes competitive because it does not have any supplementary costs (such
as travel or venue cost). Only an Internet connection and the meetings software
are needed, which allows everyone to attend the meeting.

6. There is no need to spend money on hiring a venue.

7. Technology and Internet connections are frequently improving. Software services
are continually growing and improving its services.

8. Virtual meetings can be fully recorded without any extra devices or resources.

All these exposed advantages help redact the value proposition. The following list
shows the main features that the application has to satisfy to obtain the maximum
benefit from online video meetings advantages:

• Provide an affordable company-oriented online meeting software, as a basis.

• Offer meeting recordings functionality.

• Offer the possibility to perform meetings between different companies.

• Work on many devices as possible.

64

Once the advantages and features that guarantee them are set, the smartest way to
design the value proposition is to point out the aspects where Flowescent services are
superior to face-to-face meetings. After some research, the selected value proposition has
been converged on the following main body:

“Save money and time”

“Flowescent is the smartest meeting solution. One click and start as many
meetings as you want. Record sessions and keep an activity history. And no
more money and time spent.”

Moreover, the proposition contains more descriptive parts, defined by the following
points:

1. How can I save money and time?

“1. Join: Join our community by applying for a service plan and start
managing users.”

“2. Enjoy: Create, join, and record as many meetings as you want.”

“3. Review: Check your previous sessions, display recordings, and consult
activity history.”

2. Why can I save money and time?

“1. Less wasted time: Employees will only have to set aside the necessary
time. They can participate in meetings without having to travel all the
way. People attending the conference do not need to leave their work
station or wherever they are.”

“2. No more venue costs: There is no longer a need to spend money on
hiring a venue.”

“3. Without additional costs: No more travel or venue costs. Only a
small monthly customizable tax according to each business necessities.”

What are you waiting for? Start saving now (Link to signup) and enjoy our 30 days
free trial!

65

7.10.2 Business competitive study

Business competition is an important point to take into account this business feasibility
study. It is necessary to analyze if other applications cover the previously exposed ne-
cessities and how they do it. Table 14 shows the competitive matrix with all service
plans found through a simple Internet search of the two most popular software, and which
necessities cover:

Table 13: Business competitive matrix.

The competitive matrix provides enough information to decide feasible service plans
for Flowescent application, taking into account the possible maintenance cost. Table 14
shows the competitive matrix fulfilled with chosen Flowescent service plans.

66

Table 14: Competitive matrix with Flowescent service plans.

Although the maintenance cost is no studied, a limited estimation needs to be done.
The maintenance cost estimation is based on the selected technology to perform the MFF,
which does not need much hardware resources. It is necessary to predict an estimated
number of companies that would hire Flowescent services. The application has sufficient
potential to gain a respectable professional market place.

The Spanish companies number [31] is chosen as a basis to approximate a company
clients number. In April 2019 187,388 Spanish companies from small (10 employees) to
large (more than 250 employees) size were officially registered. Assuming that only 0,001%
of those companies are interested in Flowescent services, 187 companies are clients. Com-
panies should be more interested in the premium plan, being a 37-50-100 an acceptable
client distribution estimation for respective starter, standard, and premium plans. This
data, together with previous defined pricing results on a 4,117e predicted monthly gains,
that, for sure, overcomes all possible maintenance costs.

In summary, this study ensures that Flowescent application commercialization is fea-
sible. Flowescent is the only company that offers both audio and video recordings for its
premium service plan. This feature is wide requested, and attracts clients to join Flowes-
cent community (mainly for the premium package, much competitive). Furthermore, this
purpose provides company features at all service plans and fully cross-platform support.

67

68

8 System analysis and design

This section contains all the analysis and design studies for the entire Flowescent appli-
cation, including the Multimedia Flow Switch Server MFSS, and the SaaS -based appli-
cation. All those definitions are related to all analysis and design tasks, included at S4,
S6, and S7 sub-projects.

Before going into detail, the following list defines some basic application vocabulary
that is indispensable to understand the system and define better its requirements:

• Flowescent Server: As previously studied, the union of the MFSS (MediaSoup
WebRTC SFU) and the SaaS -based application server.

• Multimedia features: Multimedia flows that could be handled by MediaSoup
WebRTC SFU. Room conferencing is an example of Multimedia feature composed
by audio and video multimedia flows that server commutes from and to all peers.

• Company types: System requirements distinct two types of companies, one with
more privileges than the other. The companies with lower privileges are named
as Normal companies, and the others with higher privileges are names as Admin
companies or Root companies. Admin companies differs from Normal companies at
the authorization level theoretically. In practice, only one Admin company exists,
which is the whole application owner. The Flowescent owners may perform some
administration tasks over all the client companies that are using its services.

• User types: The system requirements distinct between two users types, depending
on their authorization. The users with lower privileges are named as Normal users,
and the others with higher privileges are named as Admin users.

• Room types: The system requirements distinct between two room types, de-
pending on its access restriction value. The more restricted rooms are named as
Restricted rooms and the others as Open rooms.

• Recording types: The system requirements distinct between two recording types,
depending on its access restriction value. The more restricted recordings are named
as Restricted recordings and the others as Open recordings.

8.1 System architecture

This section shows more detailed information about the system architecture, which is
briefly introduced in Studies and decisions section.

As Figure 25 illustrates, the whole Flowescent architecture uses both CS (Client-
Server) and P2P (peer-to-peer) communications. In other words, the front-end client
application can communicate with the server through a REST API (CS) or Web Sockets
(P2P). The server must implement a Web Socket Server to establish a connection through
the CS model to avoid firewalls and NAT network problems. Once the connection is
established, then the Web Sockets work as a P2P model, being both server and client
able to notify each other.

69

Figure 25: Flowescent architecture.

8.2 System requirements analysis

All system requirements are described in the System requirements section, although it is
necessary to analyze them with all previous vocabulary and studies acquired knowledge.

8.2.1 Functional requirements analysis

The following description analyzes the system functional requirements together with an
actor definition (who makes the feature or action) and a description (more detailed ex-
planation):

FR-1 “The server has to switch and forward multimedia flows. It receives multiple
media streams and then decides which of those media streams has to be sent to
which system agent.”

Actor: Flowescent Server.

Description: MediaSoup server has to manage all media streams correctly im-
plementing an SFU architecture.

FR-2 “The server can perform Multimedia features, such as room conferencing through
peers.”

Actor: Flowescent Server.

Description: MediaSoup server implements an SFU architecture based on room
conferencing through peers. Each peer (user inside the system) produces media
streams (audio and video) to a conferencing room (meeting). Each meeting
represents an independent SFU (for MediaSoup, called Router).

FR-3 “The server can establish connections with all agents using socket-like protocols.”

Actor: Flowescent Server.

Description: It is necessary for peers to establish connections with the server
and vice-versa. In this case, socket web protocols are an ideal solution, which
allows P2P connections (both peer and server can notify each other about con-
figurations or changes). The Flowescent Socket Communication (SC) module is
behind all this complex communications.

70

FR-4 “The system shall block or restrict users from access to certain Multimedia fea-
tures if their company service plans do not allow it.”

Actor: Flowescent Server.

Description: The system must provide a robust mechanism to guarantee that
the users do not pass their companies service plans restrictions.

FR-5 “The system shall block unauthorized users from access to their companies con-
fidential data, settings, and management.”

Actor: Flowescent Server.

Description: The system must provide a robust mechanism to guarantee that
only Admin users can manage their companies, and Normal users do not have
any access.

FR-6 “A room closes after a few seconds of all participants left.”

Actor: Flowescent Server.

Description: The system must provide a robust mechanism to guarantee that
the rooms close automatically after a few seconds of last peer leave.

FR-7 “In-room users have access to an invitation key.”

Actor: Flowescent Server.

Description: The system must provide a robust mechanism to guarantee that
the in-room users receive an Invitation key or link associated with it to share
with desired users.

FR-8 “It is not possible to erase previous recordings. However, they are automatically
deleted after some time.”

Actor: Flowescent Server.

Description: Neither users nor system can manually erase a recording. They
are stored for some time (actually unspecified), and after that, the system deletes
it though a secure automated process.

FR-9 “Any external company interested in joining the community can apply for a ser-
vice plan through the web interface.”

Actor: External system actor applying as company manager (already not reg-
istered to the system).

Description: A company that wants Flowescent services can join the commu-
nity and apply for a service plan at any time. The company manager only has
to select the desired service plan, and insert some valid company data (at least,
a name and an email of company manager, that becomes an Admin user in the
system after registration). It is necessary that the company manager accepts the
terms of use and privacy policy according to Spanish and European regulations
(mainly, the GDPR), and the web interface must provide a reliable mechanism
to verify that.

71

FR-10 “Companies are capable of creating and managing as many users as their service
plan allows.”

Actor: Admin users.

Description: Only Admin users can create company users, as many as the
company service plan allows. To create a user at least is necessary to provide an
email. The created users cannot use yet Flowescent services, as they need first to
validate their identity. The users sign up system is designed to achieve that. If a
company changes its service plan and has more users than the new plan allows,
then it is not possible to create more users, but they are not deleted.

FR-11 “Companies can manage their user’s authorization levels.”

Actor: Admin users.

Description: Admin users are free to change at any time the authorization
level of each company user. Admin users have high privileges inside companies.
Therefore, company managers are responsible for any malfunction or data access
caused by improper privileges.

FR-12 “It is essential for users to verify their accounts after creation. A mechanism al-
low users to set their credentials and accept the terms of use and privacy policy.”

Actor: External system actor applying as new user.

Description: A user must be verified to use Flowescent services. A mechanism
called Flowescent Users Sign Up System (USUS) module is designed to handle
sign up’s and verifying users. It is a complex and secure module that is defined
and designed later. Without verification, users are unable to use the application.

FR-13 “Authentication is required. The system requires users to provide credentials to
log in.”

Actor: Normal users.

Description: A user must provide credentials to log in at Flowescent applica-
tion. The credentials are an email address and a password.

FR-14 “Tokens allow users to keep logged sessions.”

Actor: Normal users.

Description: A token is served to the user after login through cookies, avoiding
user credentials transactions at every server API call. This token is active some
hours or days, and then it becomes invalid. The token associates a user and
a dispositive to a logged account, offering better usability, acceptability, and
security.

FR-15 “Users can manage their profiles.”

Actor: Normal users.

Description: Users can manage all their profile personal data, such as email,
username, name, surname, or profile picture. The user password could be modi-
fied, having to provide the old one for security reasons.

72

FR-16 “Users can use all the Multimedia features allowed by their companies service
plans.”

Actor: Normal users.

Description: Normal users can use all multimedia features restricted only by
their companies service plan specifications.

FR-17 “Authorized users can manage their companies providing confidential data, set-
tings, and management.”

Actor: Admin users.

Description: Admin users are Normal users with company management extra
privileges. In other words, Admin users can perform all company actions.

FR-18 “Authorized users from system authorized companies would be able to create new
companies and manage their service plans.”

Actor: Admin users of Admin companies.

Description: Admin users of admin companies have the maximum authoriza-
tion level. Theoretically, they represent the Flowescent administrator team, that
manages all companies using Flowescent services. They can suspend the service
to companies (due to financial debt or terms and conditions violation) or change
their service plans.

FR-19 “Users can create rooms providing some room settings.”

Actor: Normal users.

Description: Users can create rooms at any time with custom settings. These
settings are room type (authorization), room recording type, and room recording
permissions. Users can set default settings to be applied to every room creation.

FR-20 “Users can visualize their room activity history of created and participated ses-
sions.”

Actor: Normal users.

Description: All users can visualize their sessions history (room activity), both
own created rooms and participated ones.

FR-21 “Users must provide at least the invitation key to join a room.”

Actor: Normal users.

Description: A room participant user that wants other users to join a room
needs to share the invitation key through any communication path with them.
The invitation key is necessary for room joining.

FR-22 “To access Restricted rooms, users must provide the invitation key but must be-
long to the same company as the room creator user.”

Actor: Normal users.

Description: Any user can join free to any open room if it has the necessary
invitation key. If the room is restricted, then the user must belong to the same
company as the room creator (if not, access is blocked).

73

FR-23 “Inside a room, users can change their video webcams at any moment.”

Actor: Normal users.

Description: While conferencing, it is necessary in some cases to change the
current webcam producer. In the case of multiple webcam devices, without
the cam switch option, a user would be unable to select the desired producer
device, and the application would select it randomly. It is especially relevant in
smartphone devices, that usually have more than one cam.

FR-24 “Users can manage recording settings (type and set authorization) if their com-
pany service plan allows it.”

Actor: Normal users.

Description: The recording type could be disabled, audio or audio & video,
and the recording authorization open or restricted. If a company changes its
service plan, users default settings are not erased, although are disabled since the
company re-enables recordings (through a service plan improvement). Recording
settings must be configured before room creation and cannot be changed later.
Users have changeable default settings that apply to every room creation.

FR-25 “Users can access an open record if they have participated in it. They can access
a restricted record if the creator user is from the same company.”

Actor: Normal users.

Description: The open record rooms are accessible by all participants, but re-
stricted record ones only from users of the same company as the creator. Record-
ings become available after the room closure (if enabled).

FR-26 “Authorized users can access to all recordings of their company users.”

Actor: Admin users.

Description: Authorized users can access to all recordings of their company
users.

FR-27 “Authorized users can change their companies service plans through the web in-
terface.”

Actor: Admin users.

Description: It is easy for admin users to change their companies service plans
through the web interface. An automatic procedure using the web interface is
provided.

FR-28 “Authorized users from system authorized companies can modify service plans
templates.”

Actor: Admin users of Admin companies.

Description: Admin users of Admin companies can modify service plans fea-
tures at any moment, but not the number (3 plans) and the names (starter,
standard, and premium). If a service plan is modified, it does not affect current
active company ones (companies could maintain the old service plan benefits, or
choose to change to the new one).

74

8.2.2 Non-functional requirements analysis

The following description analyzes the system non-functional requirements together with
a group definition (system part) and a description (more detailed explanation):

NFR-1 “Via an analysis of some marketing aspects, such as names, logos, and service
plans, the system has to be more prepared for the production launch.”

Group: Marketing study.

Description: To offer to Flowescent more opportunities to a hypothetical
commercial launch, it would be grateful to perform a simple marketing study
that provides some studied logos, names, or plans. The study is explained in
the Marketing study section.

NFR-2 “A business analysis show if the application is commercially feasible.”

Group: Business study.

Description: To offer to Flowescent more opportunities to a hypothetical
commercial launch, it would be grateful to check if the project is feasible
according to the competence.

NFR-3 “The project does not have to contemplate any payment logic.”

Group: Monetary management.

Description: Although Flowescent is implemented with service plans pay-
ment subscriptions, it avoids all financial data collection. This is a final degree
project, and the later possible commercial launch is out of scope.

NFR-4 “The system has three service plans that are named as the market study sug-
gests, ordered from lower to higher services.”

Group: Service plans.

Description: Flowescent service plans have to be designed to be customiz-
able. The problem here is that a fully customizable service plans would add
complexity, being better to avoid according to project objectives. Fixing ser-
vice plans number to three (fixed, studied to be an ideal option) and its names
to the starter, standard, and premium (also studied) make the logic simpler.

NFR-5 “The server must work with limited hardware resources and be scalable.”

Group: Throughput.

Description: As one of the main objectives, all throughput aspects are care-
fully treated. Theoretically, MediaSoup WebRTC SFU technology should be
more efficient than the significant current systems and could be executed un-
der limited hardware systems. Native MediaSoup should work well on those
systems but probably could appear some problems with recording function-
ality, which is more CPU expensive. In any case, recordings under limited
hardware are tested in the Results section.

75

NFR-6 “The server API must be developed following API REST standards.”

Group: Design.

Description: Some API REST coding standards theoretically provides more
code security and readability. As there are studied under solid reasoning, there
is no reason to avoid them.

NFR-7 “All data (e.g., companies, users, and recordings) must be stored correctly.
Sensitive information, like passwords or classified meeting recordings, must be
secured using cryptographic procedures.”

Group: Security.

Description: The server has to be under strict security control. All data
must be checked and stored carefully at the server database. Passwords and
access tokens are stored under stringent hashing algorithms to avoid data
extraction attacks.

NFR-8 “In case of a security breach and sensitive information exposure, the system
must guarantee that the time needed to extract the sensible data are longer
than the information life span.”

Group: Security.

Description: Related with previous data security requirements, this one
guarantees that users credentials and other sensitive data could not be ex-
tracted during the information life span. The cost of the attack is exponen-
tially much expensive than the information cost.

NFR-9 “All data must remain intact in case of failure.”

Group: Integrity.

Description: The data integrity is another crucial part to be taken into
account. Although all processing recordings become corrupted after a failure,
all the other information must remain intact.

NFR-10 “The web interface has to be cross-platform following a responsive design.
Minimal and clear application documentation must be provided.”

Group: Design.

Description: Web applications are continually growing and coexisting with
mobile applications. There is no incentive to make a mobile application, as
front-end interfaces are developed to be usable at every device type through
a responsive design.

NFR-11 “The web interface design must be user-friendly and easy to use.”

Group: Design.

Description: Usability and acceptability are the most important finding for
users satisfaction. The interface components are studied to be understandable
and easy-to-use.

76

NFR-12 “The system is required to have a 99.99% availability.”

Group: Security.

Description: Web services normally guarantee at least a 99.99% availability.
It could be easily raised with correct system monitoring tools and fast failure
recovery rates.

NFR-13 “The service has to be suitable and easy to install.”

Group: Usability.

Description: The documentation and user manual specifies the whole instal-
lation process step-by-step.

NFR-14 “The application code has to follow the chosen programming language prac-
tices.”

Group: Design.

Description: Ideal programming practices have to be followed to avoid poor
quality and unmaintainable code.

NFR-15 “Minimal and clear application documentation must be provided.”

Group: Design.

Description: As explained before, minimal documentation has to be pro-
vided at the source-code level following the Personal Extreme Programming
(PXP) methodology standards.

NFR-16 “The application must fulfill all Spanish and European legal requirements.”

Group: Legal requirements.

Description: All commercial applications must fulfill national legal regula-
tions. The software must contain detailed legal notice and right user agree-
ments.

8.3 Use case diagram

A use case diagram is a dynamic or behavior diagram in UML. Use case diagrams model
the functionality of a system using actors and use cases. Use cases are a set of actions,
services, and functions that the system needs to perform. The actors are people or entities
operating under defined roles within the system.

The previously studied requirements show three system actors or user authorizations
levels: Normal users, admin users, and admin users of admin companies. With all func-
tional system requirements analyzed and grouped by actors, providing a graphic use case
diagram is helpful to visualize the system scope. The Figure 26 illustrates a simplified
use case diagram with actions referenced to requirements.

77

Figure 26: Flowescent simple use case diagram.

8.4 Database design

As specified in the Studies and decisions section, the chosen project database is MongoDB
(NoSQL). Traditional SQL databases can be described as a set of interrelated entities (also
named tables). MongoDB databases work with references instead of relations. Their
data structures are named as collections. From now on, a database entity is named as
collection, an entity instance as a document, and an instance column as a field. Figure 27
illustrates graphically these concepts differences between SQL databases and MongoDB.
Figure 28 illustrates the database design collections and its relations, that are handled
internally through MongoDB references.

78

Figure 27: Database concepts SQL vs MongoDB.

Figure 28: Flowescent MongoDB database design diagram.

It is important to note that room recording files are saved externally due to their size,
with a room ID reference, and the server logic ensures that only authorized users could
access to those files. For this reason, recordings are not included at this database design
diagram, and all required fields to guarantee correct file access authorization are stored
at Room collection.

79

The database diagram is quite simple, although it is well related. As exposed in
the Studies and decisions section, this is not only a software project and this simple
database design contrasts with other complex application modules, such as the Flowescent
Recording System (RS) module.

The Company collection contains documents with basic company necessary informa-
tion attributes like id, name, and authorization, that indicates if its an Admin company
(1) or normal company (0). As explained in the System requirements analysis section,
a company can be deactivated due to non-payment or legal terms violation, indicated
in active attribute. Moreover, it have an attribute admin email to indicate the original
Admin user email (the user that originally created the company). The total company
users number is stored as nUsers field for efficiency purposes. The created and modified
timestamps are present for control purposes, like all other entities.

The Service Plan collection contains documents with service plans related features.
The three template service plans are unlinked from companies and are the matrix to
apply instances. When a company applies for a service plan, it has the three templates
plan options. When a service plan is contracted, then the system makes a copy of its
features instancing them to the company. For this reason, the attribute template indicates
if the service plan is a template (true, the three template service plans) or is a company
instance (false). Service Plan collection contains the following attributes: roomSize as
maximum users per room, maxUsers as max total company users number, support as a
support level, recording to indicate if companies could perform recordings (0 for nothing,
1 for audio, and 2 for both), and price as the monthly tax.

The Room collection contains documents with all room related information together
with recording settings. The state field indicates if a room is open (0), if it is processing
recordings (1), if it is closed correctly (2), or if it is closed with a record processing error
(3). Furthermore, it has an identifier name field provided by the creator user, the open
room number code field (from 0 to 999), and the authorization field that indicates if room
is open or restricted. The recording field indicates if the room has recordings activated (0
for none, 1 for audio, and 2 for both) together with recording permission rec permissions
field, that is 0 or 1 whether it is open or restricted. Finally, it contains a dynamically
updated active peers field to make sure that the users inside a room do not pass the
allowed quota of the creator user company.

The User collection contains documents that basically contain basic user data in-
formation like name, username, email, surname, and picture. In order to login, users
have to provide their email and password stored hashed and salted by a 12 round bcrypt
algorithm at password field. The in room attribute indicates if an user is currently in-
side some room, to avoid that it could be at more rooms at the same time. Finally,
the def room auth, def recordings, and def rec permissions store the users desired default
options for room authorization, record type and record permission respectively.

Company document instances are related with all other collections, Room (as owner
company and participant company), User (as company users), and Service Plan (as cur-
rently contracted service plan). Moreover, the Room has a dual relation with User (as
room creator and room participants). The following Table 15 shows all transformations
from those relations to MongoDB references.

80

Table 15: All transformation from database relations to MongoDB references.

8.5 Modules design

All Flowescent modules are defined and designed in this section. Modules are system
core functionalities that merge in Flowescent application, from server and front-end ones.
Modules are shown ordered from more internal to external, because external modules may
use more internal ones.

Logger

The Flowescent Server Logger (L) module is a log handler that allows other modules to
print and store a server log. It is important to have a clear and understandable server
log to efficiently identify problems and errors, making the implementation phase much
comfortable.

The L module uses the simple-node-logger NPM community package, quoted at Stud-
ies and decisions section. It allows printing log messages both to terminal and to an
external file, identifying errors even in testing (terminal) or production (file) environ-
ments. The main features of this package are the facility to change between time formats
and message types, which are trace, debug, info, warn, error and fatal. Figure 29 illus-
trates a small portion example of Flowescent Server log.

81

Figure 29: Flowescent Server L module: Log file example.

Mailing

The Mailing (M) module provides email services to Flowescent Server. As a SaaS based
application, it is crucial to communicate with users using an email service.

The M module uses the nodemailer NPM community package, quoted in the Studies
and decisions section. nodemailer is able to connect with external email service providers
(e.g., Gmail, Outlook) and send emails without any problem.

From now, the M module only handles essential messages. As soon as the application
grows, it would be easy to create more messages or to modify existing ones. The following
list exposes all current Flowescent M module messages:

a) Company Sign Up: This email message welcomes a new company when it regis-
ters. The message is sent to the company admin user creator and provides a secure
token that allows validating the creator account (Provides a direct link to the SUS
module, explained later).

b) User Sign Up: This email message is sent to a new user of a specific company, after
being created by an admin user. It provides a secure token that allows validating
the user account (Provides a direct link to the SUS module, explained later).

c) User Welcome: This email message welcomes a new user once it is verified. The
message is sent to the confirmed users after their successful validations through the
SUS module. It encourages users to use the platform and customize their profiles.

d) User Goodbye: This email sends a goodbye message if users are deleted by their
company administrators.

e) User Password Reset Request: This email message contains a password reset
request. The message is sent to a user who requested password recovery. It provides
a secure token that allows users to recover their password (Provides a direct link to
the SUS module, explained later, which manages password recovery logic).

f) User Password Reset Confirmation: This email message shows a confirmation
of successful password recovery. The message is sent to the requested users after
their successful password recovery through the SUS module.

82

Database Connection

The Database Connection (DC) server module provides a connection between the node.js
server and the MongoDB database. MongoDB stores data in JSON format structures
and node.js can comfortably work with them.

The DC module uses the mongoose NPM community package, quoted in the Studies
and decisions section. mongoose is an Object Document Mapper (ODM) which can easily
handle MongoDB documents and parse it to JavaScript objects. It provides a schema-
based solution to model application data, including casting, validation, query building,
and more.

In order to ensure mongoose work with Flowescent Server it is necessary to define
collections schemas and models. Each schema maps to a MongoDB collection and defines
the shape of the documents within that collection. In other words, a schema describes
all document attributes fields, such as their data types and other options (e.g., default
values, required fields). Once schemas are defined, it is time to build the models. Models
are fancy constructors compiled from schemas definitions. Then, a model instance is
directly a document. Models are responsible for creating and reading documents from
the underlying MongoDB database.

All MongoDB Flowescent Server database schemas are defined following the previous
database design study, exposed in the Database design section. This results in a company,
room, service plan, and user schemas, which allow building all entities models. With all
collection models defined, it is possible to create, read, and modify documents in many
different ways. The following table describes abstractly the model’s actions used at
Flowescent Server:

1. Search documents: With a model mongoose object, it is easy to find a document
from the database. It is possible to find a single document or many of them filtering
by field values (e.g., equality, inequality, elements inside lists). The obtained objects
are document instances.

2. Create documents: It is possible to create directly document instances from a
mongoose object, just specifying all document fields.

3. Save documents: Once a document instance is created or fetched, it is trivial to
save them. It is essential to change the instance document desired values, and then
mongoose saves it whenever the programmer wants.

4. Update documents: Although document instances can be fetched and later
saved, there is a reasonable way that allows directly to update document instances
from a collection that matches with some field values. This could be performed
directly over a mongoose model object.

5. Delete documents: With an identical behavior as document updates, documents
can be directly removed from a collection specifying the field values of the document
to be deleted. Furthermore, this could be performed directly over a mongoose model
object.

83

6. Populate searches: As explained in the Database design section, MongoDB works
with references instead of relations. Each document field that is related to another
document ID can be easily populated to access its referenced document fields. This
action is equivalent to SQL join searches.

REST API Middleware

The REST API Middleware (RAM) server module provides Middleware functionalities to
Flowescent Server REST API. Middleware is functions that perform specific actions based
on a REST API request information. These functions can be executed both before API
routes logic and for error handler. To achieve decent code practices and avoid duplicate
code, Middleware can implement some specific code logic that has to be executed before
multiple API calls. Furthermore, it can insert an error handler to all requests. Flowescent
Server uses four Middleware functions: One error handler, and three user authorization
verification handlers (through tokens), one for each three-level authorization specified in
the Use case diagram section.

The RAM module uses internally L and DC modules. The first one is necessary to
log possible errors caught by the error handler, and the second one is necessary to access
database documents for authentication verifications.

The error handler must ensure that all possible errors thrown at any route are caught
and processed. However, it is not that simple, because errors can be caused by multiple
failures caused by incorrect customer requests, authorizations, or server errors. For this
reason, a custom error type list is defined, enabling API routes error throws. If an API
route thrown an error is not listed at the error handler, then the error is logged through
the L module, and the requester is answered with an unknown server error. Table 16
shows all defined error types.

84

Table 16: RAM module error types.

The first user authorization handler verifies if a user is or not authenticated. Called
Token verifier, this handler allows API requests to pass through if they come from au-
thenticated users, regardless of their authorization. If the requester is not logged, then
the API denies the request by a 403 Forbidden HTTP error.

The second user authorization handler verifies if a user has or not admin privileges.
Called Admin verifier, this handler allows API requests to pass through if they come from
an authenticated and authorized admin user. If the requester is not authorized to act,
then the API denies the request by a 401 Unauthorized HTTP error.

The third and last user authorization handler verifies if a user has or not admin
privileges from an admin company. Called Root verifier, this handler allows API requests
to pass through if they come from an authenticated and authorized admin user from an
admin company. If the requester is not authorized to act, then the API denies the request
by a 401 Unauthorized HTTP error.

85

REST API routing

The REST API routing (RAR) server module provides API routing calls to Flowescent
Server REST API, which determines the path of a request and its necessary parameters.
This module contains all routing logic for all database collections.

The RAR module uses internally DC and RAM modules. The first one is necessary
to interact with the database, and the second one is necessary for error handling and user
authentication and authorization validation.

It is important to design all API routing correctly. All routes have to follow the
standard practices design [32] to achieve that. Each route is designed using a route path,
description, parameters, authorization, and response fields. The route path describes
the API URL, the description describes its functionalities, the parameters are the thinks
that the customer has to provide, the authorization shows who can use the route, and
the response describes the server answer that is sent to the requester. All routes are
exposed through tables for better readability. Table 17 shows all routes related with
authentication. Table 18 shows all routes related with companies. Table 19 shows all
routes related with service plans. Table 20 shows all routes related with rooms. Table
21 shows all routes related with users. All those API routes are implemented in the
Implementation and testing section.

Table 17: Authentication routes (/api/auth).

Table 18: Company routes (/api/companies).

86

Table 19: Room routes (/api/rooms).

Table 20: Service plans routes (/api/plans).

87

Table 21: User routes (/api/users).

Sign Up System

The Sign Up System (SUS) module enables a secure and manageable user sign-up system.

The SUS module uses internally M and RAR modules. The first one is necessary to
send emails to users, and the second one is necessary to offer this service through API
routes. In particular, it uses check and verify token routes from authentication routes, as
Table 17 shows.

As Flowescent is SaaS -based, its direct clients are companies. Those companies can
create and manage their users. The problem here is that the users must own application
credentials to use Flowescent services, and those credentials should not be known by
company administrators. This is where the mailing system can be used, enabling the
server to arrange credentials directly with users through email.

The following steps describe how SUS module works:

1. User creation: An admin user from any company can create users through the
web interface if the company user number does not exceed the company current
quota. It has to specify only the new user email.

2. Pre sign-up token creation: The server creates a pre-sign up token that allows
users to complete and verify their accounts. This token is sent through email from
the server to the user.

88

3. User account completion and verification: Using the pre-sign up system to-
kens, users can access the completion of their account. Users only have to click a
link that redirects to their account completion and verification. Then, users are
required to create set their account credentials and accept the legal terms of use
and privacy policy. After that, users become verified and can now use Flowescent
services.

The last two steps are used to create a password recovery system. When users forgot
their passwords, then can request a password reset that activates a mechanism using those
same steps with minimum changes. Fort this reason, this password recovery system is
considered as a part of this SUS module.

Recording System

The Recording System (RS) module enables video and audio recordings from rooms. It
is one of the most complex application modules.

The RS module uses the L module, necessary for possible errors or unexpected be-
haviors that can appear during the recording process. This module is composed of two
different parts, the live flow recordings, and their later synchronization and processing.

Recordings processing cannot be performed at flow live recording time. MediaSoup
can easily forward multimedia flows to a recording endpoint but divided for each partici-
pant and each flow type (audio and video), as there are considered as different producers.
This recording endpoint has to manage all router producers to store all video and audio
participants flow, and that is the work of the flow recording part until room closure. The
problem here is the multimedia synchronization issue, as participants join and leave rooms
at any moment. Timestamps are helpful to solve the issue, as the participant producers
first instant is known. They are stored with participants audio and video, enabling its
later synchronization and processing. Figure 30 illustrates a graphical representation of
this flow live recording RS module functionality.

Figure 30: Room live flow recording: Two participants example.

Once a room is closed, then the recordings synchronization and processing process
starts. It uses previously-stored timestamps to synchronize all media from separated
components to a single merged file. The process differs between video and audio process-
ing, as audio is easier processed. Figure 31 illustrates a graphical representation of both
audio and video synchronization and processing process.

89

The audio process only takes all audio producers and synchronizes and merges them
through previously-stored timestamps. The resulting audio media is stored at the server
and is accessible for authorized users depending on the room configuration. The video
process is more complex, as it required a previous pre-processing, that enables adding
some Flowescent marketing watermarks to all participants videos. It has another com-
plication, as after the merge process the resulting video does not contain any audio. For
this reason, it is necessary to add the previous processed audio track to the resulting
video, obtaining the final video file.

Figure 31: Recording media synchronization and processing processes.

What does this process possible is the SFU server, as all media flows must pass through
it. However, the RS module can be placed in the front-end application, each one with
their pros and cons. Table 22 shows a comparison between this two solutions.

90

Table 22: Server and client recording system placement comparison.

As exposed, client implementation is not feasible as it could generate no guaranteed
behaviors that could be impossible to handle. The only problem with a centralized
solution is the extra work added to the server.

It is fascinating thinking about how this system can be performed under a P2P based
meetings application, where there is no central server2. In this case, it is mandatory to
manage recordings at the client-side, causing the problems exposed previously.

If the RS module development has to be placed at the client-side (e.g., P2P based
meetings application), it can be done in many ways. The following list exposes all main
possible ways, illustrated in Figure 32:

1. Each user stores all meeting media: It is robust and failure resilient, as all
clients have a meeting record copy. However, it is inefficient and CPU expensive.
As users can use the application in many different device types, it is a significant
problem.

2. One user stores all meeting media: It is inefficient only in one client, as the
others do not have to do anything. However, who should do the work is a significant
problem. Besides, it is not robust, and a recording client failure invalidates all the
meeting record.

3. Users store their produced media: It is the most load-balanced option. If a
client gets involved in a failure, then only the failed client record part is lost. How-
ever, all client record parts are divided by all clients, causing a significant problem
in deciding who, when, and how has to perform the merging and synchronization.

2In many cases, a TURN server must be used to bypass NAT restrictions, as explained in the NAT
problem section.

91

(a) Case 1: Each user stores all meeting media.

(b) Case 2: One user stores all meeting media. (c) Case 3: Users store their produced media.

Figure 32: Client-side RS module placement: Possible solutions.

Room Management

The Room Management (RM) module enables multimedia meetings between users. It is
one of the most complex application modules.

The RM module uses internally RAR, DC, and RS modules. The first is necessary
to offer RM services through API routes, and the second enables the same server room
management logic to interact with the database. The RM module is liable to manage the
RS module, to start flow recordings at the precise moment for their later synchronization
and processing. This module uses Web Socket connections to communicate client and
server through a P2P architecture, although it uses some API routes. The API interface
is used at room creation level. The room management communication architecture is
through Web Sockets, where many verifications are performed.

92

Users should be able to create and join rooms in a fast way. When a room is created,
then an invitation code is generated that allows other users access. This invitation code
enables room joining from authorized users depending on room authorization level. The
code is only available during the meeting and is destroyed later. Since more than one
thousand concurrent open rooms are unlikely, a three-digit numeric code is sufficient.
After room creation, any meeting participant can share the room invitation code to more
users, who may join the room.

Inside a room, the front-end interface must guarantee a responsive gird visualization
with all meeting participants for all screen types. Furthermore, it is necessary that the
interface indicates if the room recording is enabled because users have the right to know
if they are being recorded.

Web Sockets communications enable P2P communications between server and client
applications. Those communications are complicated and handle multimedia rooms (e.g.,
creations, joins), and multimedia flows (e.g., transports, producers, consumers). As ex-
plained at MediaSoup SFU Server section, MediaSoup rooms are named as routers. A
user would be represented in MediaSoup as a peer, but they do not exist. Instead, there
are producers and consumers, that are multimedia endpoints that can both produce or
consume router resources.

Web Sockets communication processes are complex. Two-room semantic concepts
have to be maintained, one for server database and the other for MediaSoup routers,
being the router linked with the database room. MediaSoup room data structure concept
is named as router, to avoid confusions.

The following points explain how room and router creation and join processes works:

1. The application must ensure that a room has been created at the server database
before creating its corresponding router through an API communication between
client and server. After that, the client and server can establish a Web Socket
communication to create and join the router and link it to its corresponding room.

2. A user that wants to join an existing room must check through an API commu-
nication if a meeting is active and if it has the authority to participate. If it has
permission, then the client and server can establish a Web Socket communication.

3. When a Web Socket join request is accepted by the server, it interacts with the
DC module to maintain an updated counter of online router users. Moreover, the
server knows if a user leaves the room to decrease the online users counter.

As the creation and join processes are complicated, Figure 33 illustrates a simplified
graphical representation of the communication process.

93

Figure 33: Simplified creation and join processes representation.

Once a room and its corresponding router are created, and the creator user joins the
room, it can start to produce multimedia (audio and video). When another participant
joins the meeting, it starts producing multimedia. Then, the creator and recently joined
users consume the multimedia of the other. In other words, they receive video and audio
from the router. The following points explain how these processes work:

1. The client and server must first arrange the multimedia codecs necessary for audio
and video flow through WebRTC. The server has a list with all supported media
codecs, which is transmitted to the client. If the client can use one of those codecs
for audio and one for video, then urges the server to use them. If a client does not
support the codecs, it cannot produce nor consume.

2. Once the codecs negotiation is done, then the clients create their send and receive
transports, and transmits them to the server. The server connects them to the user
joined router, and returns the connected transports.

3. With transports connected to MediaSoup router, then the clients can start pro-
ducing their video and audio, which is sent to the server through sender transport
through WebRTC. Furthermore, it can start consuming all the other participant’s
video and audio, which is sent to the client through receiver transport using We-
bRTC.

As produce and consume processes are complex, Figure 34 illustrates a simplified
graphical representation of the communication process between a recently joined user and
the server.

94

Figure 34: Simplified produce and consume processes representation.

95

8.6 Front-end interfaces

As explained in the Studies and decisions section, the front-end interfaces aspect follows
the material-sense React template. In particular, Table 23 shows all Flowescent front-
end interfaces components.

Table 23: Front-end interfaces components.

96

9 Implementation and testing

This section shows all information related to the implementation and testing processes.
As explained in the Planning section, all testing is performed at the same implemen-
tation time, testing all functionalities implemented parts through the system modules
defined in the System analysis and design section. For this reason, both client and server
applications are developed in parallel.

It is important to explain the Flowescent implementation process. For a better un-
derstanding, it is described using some step-by-step points descriptions. The Flowescent
Server and React Client are the first explained implementations, describing both server
and React to client implementation processes. The Web Socket protocol is explained
next, being recordings the last explained implementation. All implementations together
converge at final Flowescent application.

9.1 Flowescent Server

Before any implementation, the server API has to offer a simple and efficient way to
modify its parameters easily without having to modify different files code. It could be
done using a server configuration file, named config.js, placed at root project directory.
All these file variables can be changed to customize server parameters that could change
easily between different production environments. Table 24 shows what this file config.js
stores.

97

Table 24: Server configuration file variables definition.

The next step is to create a self-signed SSL certificate to generate an HTTPS testing
server. This can be performed using openssl software [33]. The generated credentials
should be placed at cert project root sub-directory, both certificate, and key. After
certificate creation, information is provided to fill all server configuration file with all
testing environment parameters.

98

Once the testing environment configuration file filled, Flowescent Server can be min-
imally created with all previously defined API routes. The server main initialization file
is called server.js, placed at the project root directory. The following point description
explains what this server.js file does:

1. Run MediaSoup Workers: The server has to start the MediaSoup workers num-
ber specified in the configuration file.

2. Create an express app: An express app has to be created to implement the API
interface.

• It has a controllers sub-directory where the controllers are placed. The express
app is instanced to use the controllers from controllers sub-directory at specific
base routes. Each controller is implemented following the RAR module design
defined in the System analysis and design section.

• It has a models sub-directory where the database models and schemas are
defined. Each model and schema are defined following the database design
exposed in the Database design section. It has a front-end sub-directory where
React client application is placed. The express app is instanced to serve static
files from the front-end/build directory, where the production build React app
is placed. The front-end sub-directory is the root directory for the React
application.

• It has a utils sub-directory where the RAM, M and L modules are implemented
following the module design defined at System analysis and design section. The
error handler is named as asyncMiddleware.js, and the authorization verifiers
as verifyToken.js, verifyAdmin.js and verifyRoot.js. The Mailer and Logger
modules are implemented under the files mailer.js and logger.js.

• It has a db sub-directory where the database connection logic is placed under
a connect db.js file, implemented following the DC module designed at System
analysis and design section. Furthermore, it contains an init db.js file used for
testing purposes, that erases all MongoDB database and reinitialize it with
default data.

• It has an uploads sub-directory where all users profile images are saved, as
defined at the server configuration file.

In summary, the express app serves the React application at root route and sets
API controllers routes to use the base /api route.

3. Run an HTTPS server: An https server has to be created to host the express
app. It uses the SSL credentials, and the listen port specified at the configuration
file.

4. Run a Web Socket server: It is necessary to create a Web Socket server to handle
Web Sockets connections and messages. As explained at Studies and decisions
section, the protoo-server library is used. Once the Web Socket server is created, it
can be added to the created HTTPS server. The Web Socket protocol is explained
later at the Web Socket protocol section.

99

The following list shows all the controllers placed at controllers sub-directory:

• Authentication controller: Controller with all designed authentication routes.
It uses the /api/auth API base route.

• Company controller: Controller with all designed companies routes. It uses the
/api/companies API base route.

• Room controller: Controller with all designed rooms routes. It uses the /api/-
rooms API base route.

• Service plan controller: Controller with all designed service plans routes. It uses
the /api/plans API base route.

• User controller: Controller with all designed users routes. It uses the /api/users
API base route.

All API routes have been tested through Visual Studio Code REST Client extension
separately. Each new route implementation was followed by its corresponding testing.

9.2 React client

The React client minimal implementation has been performed in parallel with the recently
explained API server. React application has been implemented following the defined
front-end interfaces in the Front-end interfaces section and the selected Material UI
template named as material-sense. The following points explain step-by-step the React
client implementation:

1. The material-sense Material UI React template was cloned inside front-end project
sub-directory. It has been used as a start point. All the code is placed under src
sub-directory, and images to use at web interface at images one.

2. An API functional module was created to centralize all API calls logic at one file,
accessible through all application components. It has a function for every API call
and returns the response to who requested the call. This functional module was
named as api.js and placed at root React application directory.

3. The application Top Bar was implemented internally, containing different menu
visualization possibilities. Depending on user authentication and authorization,
the accessible menu options may vary. All the menus are placed at src/compo-
nents/menus folder, and the Top Bar itself is placet at src/components folder with
Topbar.js file name. According to all authentication and authorization possibilities,
the following list show all implemented application menus:

• Menu Normal: Visualized menu when the user is not authenticated. It
shows the Main, Sign in, About us and Legal components, and is placed into
MenuNorm.js file.

• Menu Auth: Visualized menu when the user is authenticated, although it
is not an admin user. It shows the Dashboard, Profile, About us, and Legal
components, placed into MenuAuth.js file.

100

• Menu Admin: Menu that is shown when a user is authenticated, and it is
an admin user. It shows the same components as menu auth together with
Company manager additional component, and is placed into MenuAdmin.js
file.

• Menu Root: Menu that is shown when the user is authenticated, and it is an
admin user from an admin company. It shows the same components as menu
admin but with Root panel manager additional component, and is placed into
MenuRoot.js file. Figure 35 illustrates this menu visualization.

Figure 35: Menu Root visualization at Top bar.

4. All necessary components were initialized following the exposed design at Front-
end interfaces section. Each one performs the required API calls to fetch, modify,
or create application elements as needed. Internally, components handle React
states to link users inputs with a JavaScript value and then interact with the API
functional module as desired.

The next descriptions define how previously studied design is implemented for each
front-end component, being the most important ones complemented by their correspond-
ing graphical interfaces view. They are tested through React developer tools each time
new functionality is completed. Those tools create a simple developer server that enables
live code testing while programming, being able to update the browser at each source
code file change.

Main component

The Main component exposes the Flowescent application value proposition, service plans,
and companies sign up logic. The value proposition is shown as studied in the Business
feasibility study section, together with some images designed to complement the value
proposition text. Below the value proposition, the service plans pricing is placed grouped
with companies sign up logic. When a service plan request is clicked from the service
plans pricing, a stepper is placed at the same place the company sign up logic. This logic
asks for a company name and a company admin user email and forces users to accept the
terms of use and privacy policy before continuing. Figure 36 illustrates the component
service plans pricing visualization.

101

Figure 36: Service plans pricing visualization.

Sign In component

The Sign In component enables users to log-in at Flowescent application. It contains
the login logic and provides a password recovery system. The login page consist in a
simple login form with email and password input fields, a sing in button and a I forgot
my password link. If a login action ends successfully, then the user is redirected to the
Dashboard component. The I forgot my password link activates a mechanism that uses
essentially the same logic of the User Sign Up component to implement password recovery
functionality. Figure 37 illustrates this component final states visualization.

Figure 37: Sign In component parts visualization.

102

About Us component

The About Us component contains Flowescent application marketing information as an
extension of the value proposition exposed in the Main component. It has a first element
similar to the Main component value proposition, although with additional text that
incites the client to request a 30 days free trial. Below, there are two more extra elements
as part of the extended value proposition exposed at Business feasibility study section, the
How can I save? and Why can I save arguments. Figure 39 illustrates this component
final states visualization.

(a) How can I save? arguments. (b) Why can I save? arguments.

(a) Value proposition.

Figure 39: About Us component parts visualization.

103

Dashboard component

Dashboard component contains main Flowescent application functionalities. It handles
room creation and joining, sessions history visualization, and recordings access and re-
production. First, at the component top are the room user default settings, with a room
authorization, recording type and recording permissions selector fields, which enables cre-
ating rooms with customizable settings. The room creation and joining elements are at
the top, divided into 2 boxes. The create box has an optional name input, and a create
button in order to create a new room with specific name, and the joining box has a
mandatory code input and a join button which enables router joining. The joining is
performed if the code provided is valid, and the requester user has authorization. The
user sessions history (owner and participation rooms) is shown in a customizable table,
with actions (buttons), state (room state), name (room name), date (room modification
date), participants (participants number) and company (company name of room creator)
columns. The history shows all created rooms and shows different information according
to the room state. If the room state is open, then one button is shown at actions column
that enables direct room joining, and room code is shown at status column. Otherwise,
the action buttons are the audio and video recordings, and the status no longer shows the
room access code. Moreover, admin users have another table with the same structure as
the first one but with all company users sessions. Figure 41 illustrates this component
main final states visualization.

(a) User default room settings. (b) Room creation and joining boxes.

(a) User session history.

Figure 41: Dashboard component parts visualization.

104

Room component

The Room component contains the meeting conferencing functionality. It interacts with
MediaSoup SFU Server to send media, and receive and visualize other participants me-
dia from the joined router. It starts after a room creation or joining success from the
Dashboard component, or through an invitation link. This component does not contain
the top bar with the menu and is not accessible through it from others. At the top left,
it is placed the Back to dashboard button that allows users to leave rooms and go back to
the Dashboard component. At the top center, it is placed a tree-digit number that is the
room invitation code. If the room invitation code is clicked, then the room URL is copied
to users computer clipboard. At the top right, there is an indication if the room is being
recorded, which specifies if it is video or audio tracks. In the center are shown all the
participants video visualized in responsive boxes being this functionality fully usable at
95% of screen types. At the bottom left it is shown the current user own video track with
an option to change the producer webcam (in case of multiple connected devices), and at
the bottom right it is shown a Flowescent logo watermark, that is shown complete if the
screen is sufficiently large or reduced to favicon logo in case of small ones. All partici-
pant video tracks boxes are white bordered during some seconds when the router detects
user audio. Audio tracks from remote users are not shown graphically, although they are
commonly auto-reproducing. Figure 42 illustrates this component visualization.

Figure 42: Room component visualization.

Profile component

The Profile component contains the user profiles customization logic. Users can change
their profile data, picture, and account passwords. At the top, it is placed a logout
button to manually close user sessions and a profile picture image at right, with the user’s
company name. There are two forms with respective submit buttons, one for changing
user profile data (email, username, name, and surname) and the other for changing the
current account password, providing the old one for security reasons. At the bottom, a
profile image drag-and-drop box file uploader is shown with a submit button enabling
user profile picture management.

105

Company Manager component

The Company Manager component contains companies customization logic. Admin users
can modify their companies data, like current service plans. Furthermore, they can man-
age all their company users. The service plan manager is the top component element. It
shows the current company service plan and its monthly cost. Moreover, it has a text
bellow that differs depending on the service plan. For example, if the service plan is
the starter or standard ones, the text encourages admin users to upgrade their compa-
nies plan, gaining more functionalities. The company users management is shown in a
customizable table, with actions (buttons), active (user verification status), email (user
email), username (user desired username), name (user name), surname (user surname),
and authorization (if an user is admin or normal user) columns. Users can be created or
deleted at any time, being the authorization level modifiable.

Root Panel Manager component

The Root Panel Manager component contains the SaaS administration control logic.
Admin users of admin companies can manage all Flowescent registered companies (e.g.,
create new companies directly or disable companies services for non-payments) and mod-
ify service plan templates. The companies management is shown in a customizable ta-
ble, with actions (modify), active (company state), name (company email), admin email
(email of admin user company creator), users (company users number), service plan (cur-
rent company service plan) and authorization (normal or admin companies) columns. The
only editable columns are the active and service plan ones. Companies can be manually
created introducing the active, name, admin email and service plan values. The service
plan manager is placet at the component bottom. It has a service plan selector in order
to change visualized service plan templates attributes for starter, standard and premium
plans. All service plan templates fields are customizable (following some obvious rules),
they can be changed only modifying desired fields values and saving it through save tem-
plate button. Figure 43 illustrates the service plan templates customizer visualization.

Figure 43: Flowescent service plans templates customizer.

106

User Sign Up component

The User Sign Up component enables new users to create their account credentials and
verify them. This component does not contain the Topbar with the menu, being inacces-
sible from other components. It is only accessible through a user sign up or user password
recovery links. The password recovery process follows the same design as this sign-up
system. The User Sign Up component is composed of a two-phase stepper. At the first
step, an unmodifiable email input is shown, which is the email inserted by the company
admin user who creates the account. The email is modifiable later, once the account is
verified. The email input is followed by a password creation double field (for security
reasons). Once the sign up button is clicked, the stepper renders the component at step
2, which shows terms of use and data privacy agreement checkbox. Once accepted, the
user account is verified, and the application redirects to the Main component. Figure
44 illustrates this component state visualization.

Figure 44: User Sign Up component visualization.

Legal component

The Legal component contains all legally required information about Flowescent appli-
cation. It includes the legal notice, data privacy, and terms of use and conditions.

9.3 Web Socket protocol

At this point, all SaaS -based application development and partial testing are done. This
section explains the implementation process of the Web Socket protocol, the P2P com-
munication protocol between the React client, and the MediaSoup SFU server. This
protocol follows the previously designed RM module considerations. All Web Socket
protocol messages are showed in Table 25.

107

Table 25: Flowescent Web Socket protocol messages definition.

The Web Socket protocol definition is one of the lighter parts of the system. The design
information studied in the System analysis and design together with MediaSoup SFU
Server documentation recommendations enables a Web Socket protocol design without
significant problems. Parallel client and server implementation allow the protocol to test
its correct behavior by exchanging messages between them. It simulates all the action-
cases related to the protocol at the final Flowescent application.

108

9.4 Recordings

One of the most important and marketable project functionality is meeting recording.
This functionality implementation is complicated due to the complexity of audio and
video tracks. Inside a meeting, users can join or leave rooms at any time, disable their
cameras or mics, be only a listener, and more. This unpredictable environment causes
recordings for being almost impossible or highly inefficient at many systems meeting
based architectures.

MediaSoup SFU architecture enables an easy transports management that can be used
for audio or/and video broadcasting, streaming, recording, among others, but it does not
offer direct support for them. In other words, MediaSoup allows external endpoints
that can interact with multimedia flows as they want, both producing (track imports)
or consuming (track exports). At first glance, it does not seem an appropriate solution,
although it opens fascinating doors related to efficiency optimization.

A question that has been done to MediaSoup developers is Why do you not implement
a built-in recording system?, and it has a clear and convincing answer: Because there is
other software that does it better. For example, there is a widely known and highly
maintained open-source software called ffmpeg [34]. It manages audio and video tracks
efficiently, being the MediaSoup developers answer accurately. An externalized recording
system is compatible with the RS module design, defined in the System analysis and
design section, offering a solution for the server load problem. These endpoints can be
moved to other hosts, only dedicated to recording management.

Audio recordings are easier to handle than video ones, being processed differently.
The audio recording procedure is named as Audio Recording System (ARS), and video
recording procedure as Video Recording System (VRS).

Following the RS module previous defined design, the following list explains all steps
that ARS implements in order to provide audio record functionality to Flowescent ap-
plication:

1. Flow live recording: Explained at RS module design section. The ARS consumes
all participant audio producers from a specific router while stores them at real-time
one by one. As they have to be synchronized later, each file is stored with a
timestamp of its joining instant.

2. Synchronization process: This process is started at the same time as room clo-
sure. It consists of all previous generated audio files merging to one final audio file.
Each audio is delayed based on its timestamp, compared with the first participant
audio one.

109

The VRS follows the RS module previous defined design, although complemented by
some extra components. The following list explains all steps that VRS implements in
order to provide video record functionality to Flowescent application:

1. Flow live recording: Explained at RS module design section. The VRS consumes
all participant video producers from a specific router while stores them at real-
time one by one. As they have to be synchronized later, each file is stored with a
timestamp of its joining instant. In this case, video is more problematic than audio,
because it can be transmitted through many different resolutions. The implemented
system ensures that all tracks are stored in real-time with the same video format,
chosen as VGA.

2. Logo addition: This process is started at the same time as room closure. It is
essential not to forget that marketing and business aspects have a significant weight.
An instant full-screen Flowescent logo is added at the beginning and the end of each
video track recorded.

3. Synchronization process: This process is started after logo addition execution.
It consists of all previously generated video files joining to one final video file. Each
video is delayed based on its timestamp compared with the first participant video
one. In this case, video is more problematic than audio. Audio can be merged
easily without any problem, although videos cannot be overlapped. To visualize all
videos, they are placed following a gird responsive design. This implementation is
not trivial and is complicated.

4. Audio addition: This process is started after a successful ARS execution. It takes
the final audio file generated by the ARS and overlaps it with the synchronized video
file.

As VRS processing is much more expensive than ARS and requires high CPU re-
sources, it is limited to 9 participants visualization (the first 9 participants). The audio
is not limited, and all participants audio files are available at video recordings. However,
only the first nine video tracks are visible.

The RS testing is a challenging application part. It is necessary to test it through
Flowescent meeting rooms, forcing all other implementations to be performed before RS
module implementation. As there are many room possible cases, it is not possible to
guarantee a fully operational functioning without errors. In summary, the only way to
test RS module correct behavior is to test it in as many room meeting configurations as
possible, especially for the most common ones.

110

9.5 Final project structure

Figure 45 illustrates the final project directory tree structure split by server and client
files.

<Flowescent>

cert

<SSL credentials>

controllers

<RAR module implementation>

db

<DC module implementation>

front-end

<React application sources>

img

<Server necessary images>

models

<Models and schemas DB definition>

recordings

temp

<Recordings temp files>

<All audio record final files>

<All video record final files>

scripts

<RS module logic scripts>

uploads

<Users profile images>

utils

<L module implementation>

<M module implementation>

<RAM module implementation>

config.js

server.js

(a) Server directory tree (node.js).

<front-end>

build

<Production React client>

public

<APP favicon file>

index.html file

src

components

menus

<Defined menus>

<All React client components>

images

<Logo images>

<Value propositiom images>

<Other decorative images>

<Room client WS logic file>

<API functional module file>

<React main JS starter files>

<React main CSS file>

(b) Client directory tree (React).

Figure 45: Final project directory tree.

111

112

10 Deployment and Results

10.1 Deployment

It is important to remember that MediaSoup works only on Linux hosts, being all other
non-based Linux distributions excluded to host the application. Furthermore, there is an-
other limitation with system ports, as Flowescent needs port 443 open to enable HTTPS
connections for both React client and API, although it requires a considerable port range
for WebRTC connections. For this reason, it cannot be deployed in port-restrictive net-
work firewalls.

The deployment is a part of the S8 sub-project. The deployment process may vary de-
pending on the selected production environment. The following deployment step-by-step
description explains all required settings to be performed to run a production Flowescent
software beginning with its source code files. As an example, this process is described
based on a clean Ubuntu server installation with public IP and DNS under port non-
restrictive network, and follows all production environment considerations defined in the
Framework and background knowledge section.

Basic software installation

Table 26 shows all necessary basic software installation description and installation
commands for an Ubuntu server.

Table 26: Basic software installation.

113

Firewall configuration

A firewall must be configured to initially enable ports 22 (for SSH remote server admin-
istration), 80 (for a Certbot certificate validation) and 443 (listener port for Flowescent
application) TCP connections. However, it must enable a port range TCP and UDP con-
nections to handle WebRTC traffic. At this installation example, it is considered a port
range from port 31000 to port 35000, which is more than enough for a small and medium
application size. The selected range supports statistically 100 companies, considering the
worst spike case. The worst spike is defined as 20 users using Flowescent services for each
company.

The following steps apply the explained firewall configuration in an Ubuntu server:

1. sudo ufw allow 22 : Enables connections from anywhere to host port 22.

2. sudo ufw allow 80 : Enables connections from anywhere to host port 80.

3. sudo ufw allow 443 : Enables connections from anywhere to host port 443.

4. sudo ufw allow 31000:35000 : Enables connections from anywhere to host port range
from 31000 to 35000.

5. sudo ufw enable: Enables firewall applying previously configured rules. It is enabled
for each system boot.

TLS certificate generation

The TLS certificate generation and validation can be performed following the next points:

1. Generate the SSL certificate using Certbot. It can be performed executing the
Certbot command certbot certonly –manual, pausing the execution when it asks for
file access validation.

2. Create an Express application to serve static files. Start an HTTP node.js Express
application and make the directories and files asked for Certbot accessible.

3. Confirm the domain, validating the certificate through the Certbot command.

4. Obtain the certificate. Certbot created the certificate and private key. Those file
paths are inserted later at the server configuration file.

The flaviocope’s guide[35] contains more information about how to perform all steps
to validate a TLS certificate through certbot.

Flowescent source code download

Flowescent source code files must be downloaded from its correspondent Git remote
repository. The code its placed at project GitLab remote repository 3. It is important to
note that this application code is proprietary, and only authorized users can download
those resources. The code repository can be downloaded using the following git command:

git clone repo url

3TFG GitLab repository: https://gitlab-bcds.udg.edu/david.ma/tfg

114

https://gitlab-bcds.udg.edu/david.ma/tfg

Build React client application

It is necessary to execute three commands from the project root folder to build the React
client application:

cd front-end (Enters to React application root folder)
yarn (Install all necessary dependencies)
yarn build (Build the React client)

Customize server configuration file

The last step before server execution is to customize the server configuration file, placed
at the root project folder and named as config.js. All variables are modifiable, although
the following ones must be modified:

• ip: Host public IP.

• port: 443, as the default HTTPS port.

• cert: Let’s encrypt certificate generated path.

• key: Let’s encrypt private key generated path.

• rtcMinPort: Desired WebRTC port range low value. In this example: 31000.

• rtcMaxPort: Desired WebRTC port range high value. In this example: 35000.

• email account: Desired email account address for mailing.

• email pass: Desired email account password for mailing.

Server daemon execution

The server can be deployed once the configuration file is filled. It is necessary to use some
node production daemon process to automate the execution (e.g., pm2, forever). pm2 is
a simple node.js daemon handler for production applications, installed through the npm
package manager (sudo npm install -g pm2). The application execution starts when the
following command is executed at the root project folder:

pm2 start server.js

The application can now be tested accessing Flowescent at the URL and port, specified
in the configuration file.

115

10.2 Results

The Implementation and testing section explains all the Flowescent application imple-
mentation process and shows some partial results. A demo application has been prepared
to enable free testing.

At this project report finalization time, the Flowescent demo is hosted in the Hetzner
cloud [36], under limited hardware. Specifically, the virtual server has 1 vCPU and 2GB
RAM hardware resources. The access is public, and it is available as a demo with all the
service plans for free at the following URL: flowescent.tk.

As the demo host address can change, all necessary access information is periodi-
cally updated at this project public TFG Wiki 4. The wiki page contains the following
information:

1. Definitive project report.

2. Project report summary.

3. Live demo information.

4. Complete legal notice, as a part of S8 sub-project.

5. Other additional documentation.

It is necessary to perform some performance studies to analyze if the resulting MFSS
is as scalable and efficient as it should be. The performance studies are simulations made
at the production Hetzner cloud server limited hardware (1 vCPU and 2GB RAM). The
server operation under limited hardware is one of the project requirements.

MFSS performance study

Figure 46 illustrates the MFSS studied performance, based on the media delay depend-
ing on meeting peers number. As the chart shows, the media delay is not appreciable
in meetings with less than 5 participants. From 5 to 35 participants, the delay increases
linearly, beginning with 50ms and ending with 1.8s. However, with more than 35 partic-
ipants, the delay grows exponentially. As the demo production server is under limited
hardware, the linear progression illustrates the medium to high CPU usage, and the
exponential progression indicates a CPU collapse.

4TFG Wiki GitLab repository: https://gitlab-bcds.udg.edu/david.ma/tfg-wiki

116

flowescent.tk
https://gitlab-bcds.udg.edu/david.ma/tfg-wiki

Figure 46: MFSS performance study.

A real-time meeting stops being practical from 15 participants, as more than 700ms
delay does not allow to hold a normal conversation.

Recordings performance study

Figure 47 illustrates the audio recordings studied performance, based on the record
processing time depending on meeting peers number in a 1-minute meeting. As the
chart shows, the audio record processing time is not appreciable in 1-minute meetings.
It begins with a 280ms delay (2 peers) and ends with a 500ms delay (10 peers). The
processing time increments in a softened linear progression and more peers do not grow
the processing time too much.

Figure 47: Audio recordings performance study.

117

The processing time depends more on the recording length than on the peer number.
These results show affordable audio records processing time performance, as waiting a
few seconds after the room closure is not a significant problem.

Final Flowescent main page

Figure 48: Flowescent home page visualization.

118

11 Conclusions

During the project elaboration, it has been possible implementing the theoretical concepts
learned at all degree subjects, especially on the IT branch ones. The following description
analyzes the most relevant degree subjects that provided the project elaboration necessary
knowledge:

• Web environment programming: This subject provides enough knowledge to
perform a correct design for the Flowescent web interfaces.

• Security and data protection: This subject provides enough knowledge to secure
all users and company data correctly at the Flowescent server.

• System management: This subject provides enough system administrator skills
to establish and maintain the production environment.

• Backbone networks and public data services & Networks and Inter-
net services configuration and maintenance: These subjects provide enough
knowledge to study, design, and implement technologies to use at Multimedia Flow
Switch Server (MFSS).

• Paradigms and programming languages: The knowledge acquired in this sub-
ject together with prior experience programming languages is enough to perform
complete studies about what technologies and programming languages should be
used.

• software development project: This subject provides previous experience in
software project methodologies useful for this project.

• Operating systems project: Operating systems experience is typically necessary
for computer engineers and software developers, and this subject provides enough
knowledge for it.

• Legislation and professional ethics: Especially since the GDPR effective date
in Europe, it is essential for a software developer to meet all legal requirements,
and this subject provides enough knowledge for it.

Each degree subject provides a specific area of knowledge, and it is relevant to find a
way to use all acquired knowledge by implementing and joining some different theoretical
concepts. It would seem easy at a glance, although there is a deep learning phase between
theoretical concepts and their practical implementations.

119

I think that this project is essential to pass from theoretical knowledge acquired during
the degree to their practical implementations in an IT project. There are many learning
and research processes behind this project, as explained along all report sections, resulting
in the final Flowescent application. It contains studies, design, and implementations for
the Multimedia Flow Switch Server (MFSS) and the Meetings Web-based Application
(MWA). However, the backbone of the project is MFSS. The MWA provides a basis
and an interesting commercial application example that uses MFSS services. All the
company, user, and service plan management were not crucial. However, many efforts
have been taken to provide a useful case of use. The resulting MWA is simple and
confined, although it is stable and adequate. As it has to be made to demonstrate the
correct MFSS operation, it is made successfully.

Initially, the business feasibility study, marketing aspects, and business models were
not contemplated. However, I have found these business-related aspects genuinely inter-
esting, adding them as a project objective. The idea was not to perform structured and
complete studies, but to use some logical procedures for trying to give more opportunities
to MWA to succeed in the real market.

Results analysis

The Flowescent software degree of achievement is exposed based on project objectives
and functional requirements. They may be proven through testing at the live demo
application. Table 27 shows the degree of achievement based on objectives and Table
28 shows it based on both functional and non-functional system requirements.

Table 27: Degree of achievement: Project objectives.

120

Table 28: Degree of achievement: System requirements.

1MediaSoup SFU can work under limited hardware systems (the recording system can be affected).
2Users credentials are cryptographically secured (encrypted meetings have not been contemplated).
3All data remains intact in case of recoverable failure, as data is not backed up.
4All documentation is developed in a schematic form, following the PXP methodology guidelines.

121

Almost all project objectives and system requirements have been fulfilled, resulting
in a complete project focused mainly on IT and systems management. The SaaS -based
application provides a minimally applied case example for the Multimedia Flow Switch
Server (MFSS). The MFSS is the principal project purpose and the most complex
part. Another complicated part is the recordings system, having to store, synchronize,
and merge all media flows. Moreover, it provides the marketing and business feasibility
studies as important purposes, exposed in the project objectives section.

Complications

As the final degree project is time-limited, it is not possible to guarantee a completely
stable operational application. During the project implementation, some problems and
unexpected behaviors have been appearing, especially in the server configurations, record-
ings system, and service plans management. Furthermore, room logic is limited, allowing
only the participant user role. User roles are an interesting additional point, that would
add more flexibility (e.g., broadcaster, listener).

Flowescent is fully compatible with Chrome and Firefox browsers. The system opera-
tion can be no guaranteed under other browsers, as not all browsers implement WebRTC
technology. For this reason, some browsers do not allow using Flowescent room conferenc-
ing functionality, although the other application modules should work without problems
at almost 99.8% of browsers.

The problem with service plan templates is that Flowescent administrators would like
to change them, for example, when the market or costumers environments change. This
functionality is not trivial, since all existent companies that have a modified service plan
may not want to replace their conditions. There is no solution to please both Flowescent
administrators and companies. The most affordable way seems to provide to affected
companies the option of maintaining their old conditions, applying only the new service
plan changes to new clients. This solution has unexpected behaviors in some cases. For
example, the system does not notice affected companies to update their plans.

The recordings system does not work as stable as expected. The room configuration
environment where users join and leave at any moment causes significant problems trying
to implement a robust system. Only complete testing of all unlimited conference con-
figuration environments can provide a stable system. The final Flowescent application
handles video recordings correctly at 95% of possible cases, and accurately audio record-
ings at 90%, being the audio more unstable to synchronize. It is important to note that
users’ physical devices can experience malfunctions that can be translated to a recording
processing or synchronization issues impossible to avoid by the system.

Acknowledgement

I am thankful to my project supervisor Dr. Jose Luis Marzo, who provided the expertise
that greatly assisted the project. I am also grateful to Dr. Immaculada Boada for
assistance with project planning and feasibility studies, and Dr. Josep Soler, who helped
with some initial project report structuration doubts. I would not forget to remember my
family and my partner, for their continuous support, especially during the last project
development weeks, which I was to work hard.

122

12 Future Work

There are opportunities and possibilities to improve Flowescent. All the work done built
a solid backbone from which Flowescent can grow up. The following list exposes some
interesting feasible functionalities that can be developed:

1. More user in-room roles: Currently, Flowescent only supports the participant
user role, which forces users to produce both audio and video. It would be inter-
esting to add more in-room roles such as listener. Listener users would join rooms
without the necessity of producing their audio or video. Besides, the participant role
can be updated to allow only video or only audio producers, providing a mechanism
that enables media producers to pause and resume at any time.

2. Improve browser support: According to Statcounter GlobalsStats browser mar-
ket share in Europe [37], both Chrome and Firefox browsers have a 68.47% of mar-
ket share. Although it is a decent value, it is not sufficient. It would be interesting
to provide at least Safari support, which can grow the compatibility percentage to
85.29%.

3. ≈100% stable recording system: As explained previously at Conslusions sec-
tion, it is not trivial to build a complete stable recording system due to its complex-
ity and the room environment variability. For this reason, recordings are limited
to nine participants for the previous reasons and CPU limitations. Independent
servers which host the recording system and performing load balancing would be a
solution to avoid this problem, adding as many CPU resources as the system needs.

4. Screen sharing: This functionality is not trivial, and its implementation is com-
plex. A screen sharing system would add considerable value to room meetings and
opens Flowescent up to new markets.

5. Service plan templates improvement: The service plan changeable templates
system has limitations, and modified plans can enter into conflict with current
companies hired service plans. Another improvement would be to stabilize this
system and allowing companies to update their current service plan with its new
version.

6. Mobile application: Flowescent is a cross-platform web application that can be
accessed through many devices with a browser and an Internet connection. How-
ever, a mobile application provides additional benefits, especially for usability, and
a more proper responsive design. The decision of making a web-based application
was taken to provide a cross-platform solution, taking into account that the project
time is limited.

123

124

13 Bibliography

This bibliography is wroten following the APA (American Psychological Association)
style.

References

[1] 9 Project Management Methodologies Made Simple. (2017, March 2). Retrieved April 5, 2019, from
https://thedigitalprojectmanager.com/project-management-methodologies-made-simple/

[2] Agile Project Management. Retrieved April 5, 2019, from https://www.atlassian.com/agile/

project-management

[3] Dzhurov, Y., Krasteva, I., & Ilieva, S. (2009). Personal Extreme Programming – An Agile Process
for Autonomous Developers. URL: https://research.uni-sofia.bg/handle/10506/251

[4] Project Management Institute (2008). A Guide to the Project Management Body of
Knowledge Retrieved (PMBOK R© Guide) - Fourth Edition. Retrieved from https:

//www.works.gov.bh/English/ourstrategy/Project%20Management/Documents/Other%20PM%

20Resources/PMBOKGuideFourthEdition_protected.pdf

[5] Project Management Plan Template. Retrieved April 6, 2019, from http://www.

projectmanagementdocs.com.vhost.zerolag.com/project-planning-templates/

project-management-plan.html

[6] Intuitive and Beautiful Project Planning. Retrieved April 26, 2019, from https://www.teamgantt.

com/

[7] Annual software Engineer Salaries in Europe, February 2019. Retrieved April 23, 2019, from https:

//www.daxx.com/blog/development-trends/it-salaries-software-developer-trends-2019

[8] Estimate My App. Retrieved April 23, 2019, from https://estimatemyapp.com/

[9] How accurate are app estimates like estimatemyapp. Retrieved April 23, 2019, from https://www.

quora.com/How-accurate-are-app-estimates-like-estimatemyapp-or-venturepact

[10] Git Documentation Glossary. Retrieved April 26, 2019, from https://git-scm.com/docs/

gitglossary

[11] Getting Started - Git basics. Retrieved April 24, 2019, from https://medium.freecodecamp.org/

what-is-git-and-how-to-use-it-c341b049ae61

[12] SSH (Secure Shell). Retrieved April 24, 2019, from https://www.ssh.com/ssh/

[13] Choosing the best code editor as a web developer in 2019. Retrieved April 24, 2019, from https:

//designrevision.com/best-code-editor/

[14] An introduction to LaTeX. Retrieved April 24, 2019, from https://www.latex-project.org/

about/

[15] Skala, W. (2018). Drawing Gantt Charts in LATEX with TikZ. The pgfgantt Package. URL: http:
//bay.uchicago.edu/CTAN/graphics/pgf/contrib/pgfgantt/pgfgantt.pdf

[16] LibreOffice Writer. Retrieved April 24, 2019, from https://www.libreoffice.org/discover/

writer/

[17] Broadband Communications and Distributed Systems. Retrieved April 24, 2019, from https://

bcds.udg.edu/

[18] Doxygen: Documenting the code. Retrieved April 26, 2019, from http://www.doxygen.nl/manual/

docblocks.html

[19] Jakobsson, C. (2015). Peer-to-peer communication in web browsers using WebRTC A de-
tailed overview of WebRTC and what security and network concerns exists. URL: http://www.

diva-portal.org/smash/record.jsf?pid=diva2%3A852726&dswid=-7979

125

https://thedigitalprojectmanager.com/project-management-methodologies-made-simple/
https://www.atlassian.com/agile/project-management
https://www.atlassian.com/agile/project-management
https://research.uni-sofia.bg/handle/10506/251
https://www.works.gov.bh/English/ourstrategy/Project%20Management/Documents/Other%20PM%20Resources/PMBOKGuideFourthEdition_protected.pdf
https://www.works.gov.bh/English/ourstrategy/Project%20Management/Documents/Other%20PM%20Resources/PMBOKGuideFourthEdition_protected.pdf
https://www.works.gov.bh/English/ourstrategy/Project%20Management/Documents/Other%20PM%20Resources/PMBOKGuideFourthEdition_protected.pdf
http://www.projectmanagementdocs.com.vhost.zerolag.com/project-planning-templates/project-management-plan.html
http://www.projectmanagementdocs.com.vhost.zerolag.com/project-planning-templates/project-management-plan.html
http://www.projectmanagementdocs.com.vhost.zerolag.com/project-planning-templates/project-management-plan.html
https://www.teamgantt.com/
https://www.teamgantt.com/
https://www.daxx.com/blog/development-trends/it-salaries-software-developer-trends-2019
https://www.daxx.com/blog/development-trends/it-salaries-software-developer-trends-2019
https://estimatemyapp.com/
https://www.quora.com/How-accurate-are-app-estimates-like-estimatemyapp-or-venturepact
https://www.quora.com/How-accurate-are-app-estimates-like-estimatemyapp-or-venturepact
https://git-scm.com/docs/gitglossary
https://git-scm.com/docs/gitglossary
https://medium.freecodecamp.org/what-is-git-and-how-to-use-it-c341b049ae61
https://medium.freecodecamp.org/what-is-git-and-how-to-use-it-c341b049ae61
https://www.ssh.com/ssh/
https://designrevision.com/best-code-editor/
https://designrevision.com/best-code-editor/
https://www.latex-project.org/about/
https://www.latex-project.org/about/
http://bay.uchicago.edu/CTAN/graphics/pgf/contrib/pgfgantt/pgfgantt.pdf
http://bay.uchicago.edu/CTAN/graphics/pgf/contrib/pgfgantt/pgfgantt.pdf
https://www.libreoffice.org/discover/writer/
https://www.libreoffice.org/discover/writer/
https://bcds.udg.edu/
https://bcds.udg.edu/
http://www.doxygen.nl/manual/docblocks.html
http://www.doxygen.nl/manual/docblocks.html
http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A852726&dswid=-7979
http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A852726&dswid=-7979

[20] Understanding WebRTC Media Connections: ICE, STUN and TURN. Re-
trieved April 29, 2019, from https://www.avaya.com/blogs/archives/2014/08/

understanding-webrtc-media-connections-ice-stun-and-turn.html

[21] Overview of WebRTC Media Servers. Retrieved April 29, 2019, from http://webrtcbydralex.

com/index.php/2016/12/13/overview-of-webrtc-media-servers/

[22] MediaSoup. Retrieved April 29, 2019, from https://mediasoup.org/

[23] mediasoup-demo v3. Retrieved April 24, 2019, from https://github.com/versatica/

mediasoup-demo

[24] JavaScript HTML DOM. Retrieved April 30, 2019, from https://www.w3schools.com/js/js_

htmldom.asp

[25] Top 11 JavaScript Frameworks for 2019. Retrieved April 30, 2019, from https://www.lambdatest.

com/blog/top-javascript-frameworks-for-2019/

[26] Business name generator. Retrieved May 5, 2019, from https://www.businessnamegenerators.

com/

[27] material-sense. Retrieved May 1, 2019, from https://github.com/alexanmtz/material-sense

[28] Gimp software. Retrieved May 5, 2019, from https://www.gimp.org/about/

[29] Library 3 AM font. Retrieved May 7, 2019, from https://www.fontspace.com/igor-kosinsky/

library-3-am

[30] What is a Feasibility Study?. Retrieved May 16, 2019, from https://www.extension.iastate.

edu/AGDm/wholefarm/html/c5-65.html

[31] Cifras PyME Empresas. Retrieved May 18, 2019, from http://www.ipyme.org/es-ES/ApWeb/

EstadisticasPYME/Documents/CifrasPYME-abril2019.pdf

[32] Restful API Designing guidelines - The best practices. Retrieved May 18, 2019, from https://

hackernoon.com/restful-api-designing-guidelines-the-best-practices-60e1d954e7c9

[33] OpenSSL - Cryptography and SSL/TLS toolkit. Retrieved May 21, 2019, from https://www.

openssl.org/

[34] Ffmpeg - A complete, cross-platform solution to record, convert and stream audio and video. Re-
trieved May 22, 2019, from https://ffmpeg.org/

[35] Setup Let’s Encrypt for Express. Retrieved May 23, 2019, from https://flaviocopes.com/

express-letsencrypt-ssl/

[36] Hetzner online. Retrieved May 27, 2019, from https://www.hetzner.com/

[37] Browser Market Share in Europe. Retrieved May 28, 2019, from http://gs.statcounter.com/

browser-market-share/all/europe

126

https://www.avaya.com/blogs/archives/2014/08/understanding-webrtc-media-connections-ice-stun-and-turn.html
https://www.avaya.com/blogs/archives/2014/08/understanding-webrtc-media-connections-ice-stun-and-turn.html
http://webrtcbydralex.com/index.php/2016/12/13/overview-of-webrtc-media-servers/
http://webrtcbydralex.com/index.php/2016/12/13/overview-of-webrtc-media-servers/
https://mediasoup.org/
https://github.com/versatica/mediasoup-demo
https://github.com/versatica/mediasoup-demo
https://www.w3schools.com/js/js_htmldom.asp
https://www.w3schools.com/js/js_htmldom.asp
https://www.lambdatest.com/blog/top-javascript-frameworks-for-2019/
https://www.lambdatest.com/blog/top-javascript-frameworks-for-2019/
https://www.businessnamegenerators.com/
https://www.businessnamegenerators.com/
https://github.com/alexanmtz/material-sense
https://www.gimp.org/about/
https://www.fontspace.com/igor-kosinsky/library-3-am
https://www.fontspace.com/igor-kosinsky/library-3-am
https://www.extension.iastate.edu/AGDm/wholefarm/html/c5-65.html
https://www.extension.iastate.edu/AGDm/wholefarm/html/c5-65.html
http://www.ipyme.org/es-ES/ApWeb/EstadisticasPYME/Documents/CifrasPYME-abril2019.pdf
http://www.ipyme.org/es-ES/ApWeb/EstadisticasPYME/Documents/CifrasPYME-abril2019.pdf
https://hackernoon.com/restful-api-designing-guidelines-the-best-practices-60e1d954e7c9
https://hackernoon.com/restful-api-designing-guidelines-the-best-practices-60e1d954e7c9
https://www.openssl.org/
https://www.openssl.org/
https://ffmpeg.org/
https://flaviocopes.com/express-letsencrypt-ssl/
https://flaviocopes.com/express-letsencrypt-ssl/
https://www.hetzner.com/
http://gs.statcounter.com/browser-market-share/all/europe
http://gs.statcounter.com/browser-market-share/all/europe

14 User manual

The user manual has been made following the project Personal Extreme Programming
(PXP) methodology. As it detracts the documentation process, it is explained following
a schematic and precise steps structure. This manual is a part of the S8 sub-project.

As the implemented application is SaaS -based, only the commercialization company
has to deploy or install Flowescent on an own server following the steps provided in the
Deployment and results section. The software is cloud-based, and users do not have to
install specific software, as they only need an Internet connection and a browser support-
ing JavaScript. As two authorization user types exist, both admin and normal users have
their manual.

14.1 Normal user manual

Application access

1. Account creation: To get access at Flowescent services, you have to ask for an
account to your company managers.

2. Account validation: Once your company managers create your account, you will
receive an email with instructions to validate your account and set your log-in
credentials. You must read and accept our legal terms of service and data privacy
policy.

3. Access: Once your account is validated, you can log in to Flowescent application
from any device at Sign in menu item providing your account credentials.

4. Logout: You can logout from a previously logged session easily at Profile menu
item, clicking the Logout button.

Meeting conferencing

1. Start a new meeting: You can start a new meeting at any moment going to
the Dashboard menu item and click Create button. Furthermore, you can specify a
room name.

2. Join an existing meeting: You can join an open meeting if you are authorized
and you provide the invitation code at any moment going to the Dashboard menu
item. You have only to insert the code at Join room input and click the Join
button.

3. Change your default room settings: You can change at any moment your
room creation authorization, recordings type, and recordings permissions going to
the Dashboard menu item and clicking the Show settings button.

4. Visualize room history: You can visualize your room creations and participations
history going to the Dashboard menu item, under room creation and joining. If you
have permission, audio and video recordings button will be enabled, and you can
visualize or reproduce them as easy as a click.

127

Profile customizing

1. Customize user data: You can change your profile data such as email, username,
name and surname at any time in the Profile menu item Update data form. You
only have to modify the desired fields and then click the Update data button. Please
note that the email address is unique and you cannot use it at multiple Flowescent
accounts.

2. Change your password: You can change your password at any time in the
Profile menu item Update password form. You only have to provide the old and
new password, and then click the Update password button. Please note that the
password must contain at least eight characters.

Get more application information

1. About us menu: You can consult at any moment more information about Flowes-
cent services in the About us menu item.

Consult our legal terms

1. About us menu: Feel free to consult our legal terms in the Legal menu item.

14.2 Admin user manual

Admin users can consult the normal user manual, as they can perform all normal user
actions. Admin users are considered as company managers that hire Flowescent services.

Join Flowescent community

1. Join us: Feel free to apply for your desired service plan in the Home menu item.
You only have to click your desired service plan, insert the required company nec-
essary data, and start enjoying our 30 days free trial.

Manage your company

1. Change your service plan: You can change your company service plan at any
moment by clicking Downgrade to and Upgrade to buttons as desired at Company
menu item.

2. Create users: You can create as many users as your plan allows at Users manager
table at Company menu item. You have to insert the new user valid email, and
optionally his/her name, surname, and permissions (normal user by default).

3. Edit users authorization: You can edit at any moment users authorization at
Users manager table at Company menu item. You only have to click the Edit
button at the desired user row, modify the authorization column, and then save
changes by clicking the Save button.

4. Users deletion: You can delete users at any time at Users manager table inn the
Company menu item. You only have to click the Delete button at the desired user
row, and then confirm the action by clicking the Save button.

128

	Introduction
	Motivations and purpose
	Project objectives
	Project structure

	Methodology
	Agile based on PXP

	Planning
	Customer requirements
	Sub-projects definition
	Tasks definition
	Requirement Traceability Matrix
	Planning schedule

	Feasibility study
	Technical concepts study
	Technology study
	Legal requirements study
	Economic study
	Conclusion

	Framework and background knowledge
	Concepts definition
	Environments definition
	Testing environment
	Production environment

	Project associates

	System requirements
	Functional requirements
	Non-functional requirements

	Studies and decisions
	Hardware
	Multimedia Flow Switch Server
	WebRTC Technology
	NAT problem
	WebRTC Media Server
	Decisions
	MediaSoup SFU Server
	Software libararies

	SaaS-based application
	Back-end
	Front-end

	MWA: MFSS integration with the SaaS-based application
	Git client choice & practices
	Documentation practices
	Source code editor choice
	Final software used and technical requirements
	Marketing study
	MWA name
	User interfaces design
	Logos

	Business feasibility study
	Value Proposition
	Business competitive study

	System analysis and design
	System architecture
	System requirements analysis
	Functional requirements analysis
	Non-functional requirements analysis

	Use case diagram
	Database design
	Modules design
	Front-end interfaces

	Implementation and testing
	Flowescent Server
	React client
	Web Socket protocol
	Recordings
	Final project structure

	Deployment and Results
	Deployment
	Results

	Conclusions
	Future Work
	Bibliography
	User manual
	Normal user manual
	Admin user manual

